Spatial Atomic Layer Deposition a novel very fast atmospheric pressure deposition technique

bringing new possibilities for nano-scaled and nanodesigned coatings for a range of large area glass and foil based applications

Prof. Drs. Karel Spee (karel.spee@solliance.eu)

Introduction

- Intro to spatial ALD
- Overview on SALD equipment
- Overview on Applications
 - Photovoltaics
 - Flexible electronics
 - Glass based products
- Conclusions

What is Atomic Layer Deposition

28 June 2017 - GPD Workshop

What is Atomic Layer Deposition

28 June 2017 - GPD Workshop

Spatial separation of half-reactions

28 June 2017 - GPD Workshop

Spatial Atomic Layer Deposition **TNO**

TNO solution:

Atmospheric pressure Spatial Atomic Layer Deposition

- Spatial separation of half reactions instead of time-separated
- Gas bearings maintain very close distance between injector and substrate → Typically 10-20 µm
- No intermixing of precursor and reactant

S-ALD Advantages

- Atmospheric pressure: no vacuum! → compatible with IJP, slot-die, etc.
- Allows roll-to-roll and large area sheet-to-sheet processing
- Deposition rates ~nm/s: Hours become minutes!
- No parasitic deposition
- High precursor yield
- Premixing of precursors possible
- Many materials deposited so far:
 - Al₂O₃, TiO₂, SiO₂, HfO₂, ZnO, Al:ZnO, In:ZnO, InZnO, InGaZnO, ZnSnO_x, Ag, Alucone (MLD) and many more

Introduction

- Intro to spatial ALD
- Overview on SALD equipment
- Overview on Applications
 - Photovoltaics
 - Flexible electronics
 - Glass based products
- Conclusions

TNO Lab reactor(s)

- Rotating reactor
- Head floating on substrate/substrate table by a gas bearing plane → Proximity 20 µm
- Total reactor placed in furnace

Poodt et al, Adv. Mat. 22(32) 2010, p. 3564-3567

Deposition of Al₂O₃ passivation layers on c-Si solar cells
Up to 4800 wph; Dep. Rate 4, 6 or 8 nm/s; T_{dep} 180-225 °C

- Deposition of Al₂O₃ passivation layers on c-Si solar cells
- Up to 3600 wafers/hr; 6 nm at 1nm/meter; CoO 0.025 €/wafer
- Independent from TNO development

https://www.youtube.com/watch?v=ywBd9K8yJX0

TNO R2R S-ALD

- Gas bearings prevent foil touching Drum
- Roll moves opposite foil direction
 - Foil clockwise slowly; Drum anti-clockwise fast
- Nr of cycles depends on Nr of precursor slots, speed of foil and speed of Drum

TNO R2R S-ALD

TNO

OH

- Gas bearings prevent foil touching Drum
- Roll moves opposite foil direction
 - NrVDL-FLOW & Meyer Burger in the Netherlandsslsell R2R S-ALD production systems

MEYER BURGER

N₂ gas bearing

N₂ gas bearing

t betwee

Up-scaling: R2R Spatial ALD

Large-scale tool available by Meyer Burger (the Netherlands)

Large-area S2S Spatial ALD pilot line TNO

- Substrate: Maximum size 325 x 400 mm (includes Gen1)
- T_{dep} up to 350°C

S2S SALD Pilot line

- 7 slot injector
- Precursors separated or premixed
 - H₂O & H₂S
 - DEZ & TMA
- Layers possible: ZnO, AI:ZnO, AI₂O₃, Zn(O,S), AI:Zn(O,S)

S2S SALD Pilot line

SOLLIANCE

28 June 2017 - GPD Workshop

Atmospheric Plasma activated S-ALD

- Surface Dielectric barrier Discharge plasma with N₂ or O₂ plasma
- Ag, SiO_2 , ZnO, AI_2O_3 , TiO_2

SDBD linear jet

Hans Pulker Award ICCG11

Creygton et al, Proc. ICCG 11 Braunschweig, 2016, Developments in Plasma Enhanced Spatial ALD for High Throughput Applications

Solliance

28 June 2017 - GPD Workshop

Introduction

- Intro to spatial ALD
- Overview on SALD equipment
- Overview on Applications
 - Photovoltaics
 - Flexible electronics
 - Glass based products
- Conclusions

Prospects for Solar cell manufacturing

Solar cell type	Application	Thicknes	ALD materials				
		s (nm)					
AlGaAs/GaAs	Multijunction Absorber	30–400	GaAs	AlGaAs	AlAs		
a-Si:H	Transparent conductive oxide	400	ZnO:B				
c-Si	Surface passivation layer	5–30	Al ₂ O ₃				
CIGS	Buffer layer	10–70	ZnSe	(Zn,Mg)O	Zn(O,S)	ln_2S_3	GaS
	Diffusion barrier layer	100-300	Al ₂ O ₃				
	Encapsulation layer	10–55	Al ₂ O ₃				
CdTe	Window layer/n-type layer	~100	Zn(O,S)				
Organic	Encapsulation layer	15–200	Al ₂ O ₃	Al ₂ O ₃ / HfO ₂			
	Electron selective layer	1–35	Al ₂ O ₃	ZnO	TiO ₂		
	Transparent conductive oxide	150	ZnO:Al				
Dye-sensitized	Barrier layer	0.1–25	Al ₂ O ₃	TiO ₂	HfO ₂	ZrO ₂	
	Photoanode	5–90	TiO ₂	ZnO:Al	SnO ₂	ZnO	TiO ₂ :Ta
	Blocking layer	7–20	SnO ₂	TiO ₂			
	Compact layer		HfO ₂				
	Transparent conductive oxide	7	In ₂ O ₃ :Sn				
	Sensitizer	5	In ₂ S ₃				
Heterojunction nanostructured	Absorber		Cu _x S				

Prospects for Solar cell manufacturing

Solar cell type	Application	Thicknes	ALD mater	ials			
		s (nm)					
AlGaAs/GaAs	Multijunction Absorber	30–400	GaAs	AlGaAs	AlAs		
a-Si:H	Transparent conductive oxide	400	ZnO:B				
c-Si	Surface passivation layer	5–30	AI_2O_3				
Lius		10-70	LIIJC	<u>(∠1</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Zn(O,S)	In ₂ S ₃	GaS
	Diffusion barrier layer	100-300	Al_2O_3				
	Encapsulation layer			•			
CdTe	Window layer/n-type laye Pr	oduct	ion eq	uipme	nt by: [
Organic	Encapsulation layer		Solay	tec			
	Electron selective layer			a a la			
	Transparent conductive o.		Levite	ecn	5		
Dye-sensitized	Barrier layer	0.1-25	AI ₂ O ₃	TiO ₂	HtO ₂	ZrO ₂	
	Photoanode	5–90	TiO ₂	ZnO:Al	SnO ₂	ZnO	TiO ₂ :Ta
	Blocking layer	7–20	SnO ₂	TiO ₂			
	Compact layer		HfO ₂				
	Transparent conductive oxide	7	In ₂ O ₃ :Sn				
	Sensitizer	5	ln_2S_3				
Heterojunction	Absorber		Cu _x S				
nanostructured							
	Vall	DEILEL				0121074	002

Zn(O,S) buffer layers in CIGS solar cells

- CdS buffers deposited by Chemical Bath Deposition (CBD)
 - Cd unwanted compound & CBD of CdS is strongly polluting
- Several groups studied alternatives using ALD

Zn(O,S) is promising candidate

Increased efficiency (~+0.5%) & Comparable cost (~USD 0,02/Wp)

Zn(O,S) in labscale S-ALD reactor

DEZ inle Gas bearing Water inle

- Precursor DEZ + premix of H₂O/H₂S
- Film composition can be continuously controlled

Film composition

Zn(O,S) buffer layers

Results: Transparency

- Plotted below are ZnO_{1-x}S_x with x=0 (ZnO), x=1 (ZnS) and x=0.22
- Characteristic "bowing " of the band gap observed, according to literature

28 June 2017 - GPD Workshop

Flexible electronics

Application	ALD materials
Moisture barriers &	Al ₂ O ₃
Encapsulation	HfO
	1102
	TiO ₂
Transparent Oxide	GIZO,
Semiconductors	ZnΩ
Thin film transistors	2110
TCO's	AZO
	Graphene [#]
Buffer layers	ZnO
Light management	TiO_2 , SiO_2 , ZrO_2
Anti-reflection	

(# in development)

R2R Spatial ALD for barrier foils

Many applications require encapsulation

 Organic PV, CIGS, quantum-dot, Perovskites,

 Glass-based solutions are expensive, heavy and not flexible

Barrier requirements:

- WVTR lower than 10⁻⁴ g/m²/day
- Highly transparent
- For PV: 20+ years lifetime
- High-throughput, low-cost

R2R Spatial ALD for barrier foils

- Example: Al₂O₃ on PET foil
- No planarization, no pre-treatment, no cleaning
- WVTR measured by optical Calcium test
- Overall WVTR for 20 nm Al₂O₃:
 - 2 x 10⁻⁵ g/m2/day at 20 °C/50 %RH
 - 4 x 10⁻⁴ g/m2/day at 60 °C/90 %RH
- Excellent transparency

Spatial ALD of oxide semiconductors

- Sheet-to-sheet Spatial ALD for thin-film encapsulation
- Example: PET Organic planarization 50 nm Al2O3 Organic – 50 nm Al₂O₃; 30 cm x 30 cm.
 - Samples were not made in cleanroom: particles unavoidable

t = 1100 hrs at 60°C/90% RH

- No visible defects after more than 1100 hrs at 60 °C / 90 % RH
- 1100 hrs at 60 °C / 90 % RH is ~ 2.5 years at ambient conditions

InGaZnO for flexible low power consumption displays

28 June 2017 - GPD Workshop

Spatial ALD of oxide semiconductors

- Sheet-to-sheet Spatial ALD for high mobility oxide semiconductors
- Example: InZnO (IZO) oxide semiconductor → higher mobilities than IGZO
 - With our proprietary Spatial ALD process: full control of composition

Spatial ALD IZO Integrated ESL TFTs on 150 mm substrates

- 15 nm SALD IZO compared to baseline 15 nm sputtered stateof-the-art IGZO
- Mobility >30 cm²/Vs (10 cm²/Vs for IGZO), Threshold / Onset ~ 0V. Down to 5 nm channels
- Excellent bias stress stability

Possibilities for Display, Architectural & Automotive glass

Application	ALD materials
Moisture barriers &	Al ₂ O ₃
Encapsulation	HfO
	TiO ₂
Transparent Oxide	GIZO,
Semiconductors	700
This film to a sist and	200
I NIN TIIM transistors	
TCO's	AZO
	- · · *
	Graphene*
Buffer layers	ZnO
Light management	TiO ₂ , SiO ₂ , ZrO ₂
Anti-reflection	

ALD of AI:ZnO

Premix possible with S-ALD

TEM cross section of Al:ZnO by conventional ALD

Y. Wu et al Journal of Applied Physics 114, 024308 (2013)

Spatial atomic layer deposition of AI:ZnO

Precursors DMZ, TMA and H₂O

A. Illiberi et al ACS Applied Materials and Interfaces 5, 13124 (2014)

Spatial atomic layer deposition of AI:ZnO

A. Illiberi et al. Solar Energy Materials and Solar Cells 95, 1955 (2011)

Strengthened Glass

Beneq multilayer ALD for better glass crack resistance

Source: Beneq Strengthened Glass Brochure

Anti-reflection coatings Optical coatings

- SiO₂, TiO₂, Al₂O₃ and other oxides have frequently been deposited by ALD
- Li et al deposited amorphous TiO₂/Al₂O₃ bilayer on BK7
 @ 120°C using TiCl₄, TMA and H₂O

Fig. 5. (Color online) Reflectance of AR coating at 550 nm; at the top right corner, the reflectance is demonstrated in detail, and the reflectance is no more than 0.2% at 550 nm.

Li et all, Chinese Opt. Lett., COL 11 (Suppl.) S10205(2013)

R2R S-ALD of an optical stack

- Substrate PET
- TiCl₄ + H₂O and TMA + H₂O
- Deposition temperature: 100 °C

 An optical stack of Al₂O₃ and TiO₂ was calculated to achieve a reflectance maximum at 525 nm on PET foil

R2R S-ALD of an optical stack

- Uniform reflective coating with excellent optical properties
- Transmittance and Reflectance fit excellently with an offset of only $\lambda \sim 28$ nm

Self-cleaning TiO₂

 Both Anatase & Rutile TiO₂ using ALD reported in literature

Fig. 5. Time dependence of the stearic acid layer thickness decrease, measured by FTIR, for TiO_2 films deposited at various temperatures. Pilkington Activ self-cleaning glass is included for comparison.

Anatase: Ti(OMe)₄ + H_2O ALD 250-500°C

Pore et al, Chem. Vap. Dep. 2004, 10, No.3 p.143

Rutile: $TiCl_4 + H_2O$ ALD $500^{\circ}C + RTA 900^{\circ}C$

Yu et al, Int. J. Photoenergy, Vol 2013, ID 431614

Introduction: ALD in porous substrates

- ALD is famous for its ability to conformally coat high aspect ratio structures and porous substrates
- New applications are emerging for ALD in porous materials
 - 3D batteries, smart textiles, catalysis, membranes.....

Philips/ Eindhoven University P. Notten et al, Adv. Mater. 19 (2007) 4564

D. DeMeo et al, Nanotechnology and Nanomaterials » "Nanowires -Implementations and Applications" Chapter 7 (2011)

Tyndall (M.Pemble) https://www.youtube.com/watch?v=DGtNR0mXH0

Integrated On-Chip Energy Storage Using Porous-Silicon Electrochemical Capacitors, D.S. Gardner, C.W. Holzwarth, Y. Liu, S.B. Clendenning, W. Jin, B.K. Moon, C.L. Pint, Z. Chen, E. Hannah, R. Chen, C.P. Wang, C. Chen*, E. Mäkilä**, and J.L. Gustafson, Intel Corp., *Florida Int'l Univ., **University of Turku)

- Often requires high throughput, large-area, roll-to-roll
- Can we do this with Spatial ALD?

Spatial ALD in porous materials

- We have demonstrated high speed, high step coverage Spatial ALD at atmospheric pressure inside a variety of porous materials
- Many potential applications; Possible to use e.g. Roll-to-Roll Spatial ALD

Conclusions

 Speed enhancement up to 100x brings CoO considerably down → new application opportunities

Conclusions

- SALD serious competitor for PVD/CVD
- Many materials already deposited using S-ALD
- Already 4 companies who sell TNO based SALD equipment
- Several companies develop products using SALD
- Many glass and plastic foil applications possible

Acknowledgements

ALD-team:

- Paul Poodt
- Fieke van den Bruele
- Fred Roozeboom
- Andrea Illiberi
- Frank Grob
- Yves Creyghton
- Corne Frijters
- Willem van Boekel
- Valerio Zardetto
- Ellis Balder

- Barrier team :
 - Raghu Pendyala
 - Ahmed Salem
 - Pradeep Panditha
 - Peter van der Weijer
- TFT- team
 - Ilias Katsouras
 - Gerwin Gelinck

WWW.SOLLIANCE.EU

karel.spee@solliance.eu

