Learning Event 2018 - GPD Turkey

Glass Performance Days 2018 March 07-09, 2018, Istanbul, Turkey

Case study from New Istanbul Airport – Largest in Europe Innovation Corner - Hall 11

Emissivity measurement along the value chain – Monitoring from deposition, tempering to window testing

Agenda

- Company
- 2. Relevance and Materials of Conductive Coatings in Glass Industry
- 3. Characteristics and Requirements for Coatings
- 4. Metrology for Conductive Materials
 - Eddy Current Technology
 - Testing Setups
- 4. Opportunities Provided by Non-contact Eddy Current Testing
 - LowE Coating
 - Mirror Coating
 - Automotive Coating
 - Electrode Coating, e.g. Smart Glass or Solar Glass
- 5. Summary

Company – SURAGUS GmbH is German Metrology Specialist

Technology

- Eddy current-based testing solutions (SURAGUS)
- Other integrated metrology (OEM)

Location and Presence

- R&D and manufacturing in Germany (Dresden & Berlin)
- EddyCus systems are present on six continents
- Local representatives and service teams in Korea, China, Taiwan ...

Ownership

German privately owned LayTec & SURAGUS Group (> 80 employees, >2,100 systems worldwide)

Applications

Quality assurance of functional thin-films

Relevance - Conductive Coatings on Glass Can Be Found in Various Glass Applications

Indirect Properties

- Architectural glass industry (emissivity)
- Mirrors (optical properties)

Electrical Properties

- Display and flat monitors
- PV/Solar
- LED/OLED Lightning & Smart-Glass
- Smart glass
- Deicing and heating applications

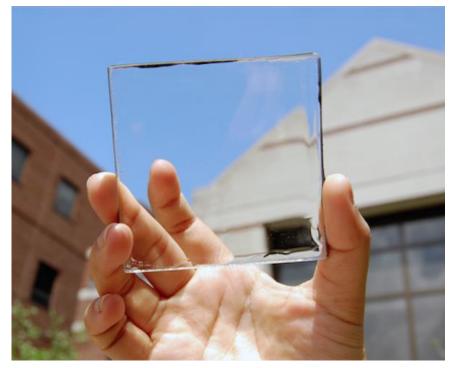
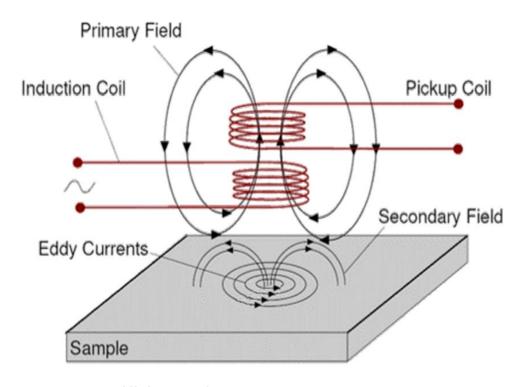



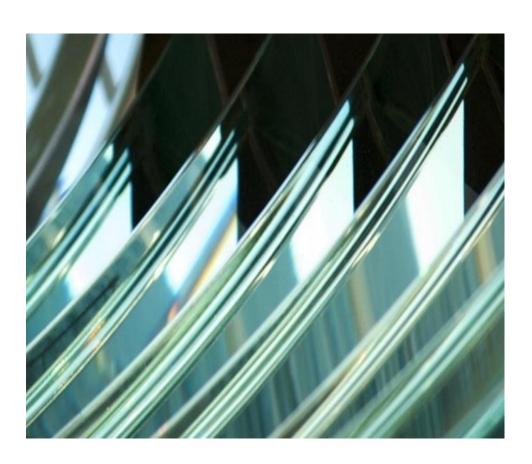
Photo: Michigan State University

SURAGUS Non-Contact Technology

How Eddy Current Works

- I. A primary magnetic field is created when alternating current is injected into an induction coil
- Eddy Currents are generated when the coil is placed over a conductive sample
- III. The characteristics of the Eddy Currents are determined by material characteristics
- IV. The Eddy Currents generate a secondary magnetic field opposed towards the primary field
- V. The impedance of the coil is affected by material differences that influence conductivity
- VI. This influence is measured by a pick up coil

- + High sample rate
- High sensitivity
- Non-contact solutions
- Limited to conductive materials


Monitoring of Layer Modification Processes

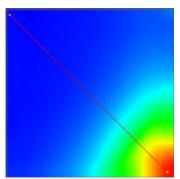
Capabilities of eddy current monitoring

- Metal layer thickness measurement from 2 nm 2 mm
- Sheet resistivity measurement from 0.1 mOhm/sq to 3,000 Ohm/sq
- Defectoscopy by imaging

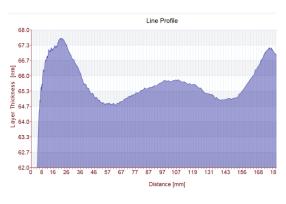
Process monitoring

- Deposition (PVD, CVD, ...)
- Annealing/Tempering
- Others (Doping, Etching etc.)

Introducing Four General Testing Setups

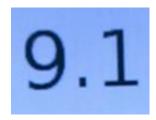

Portable testing

9.1


Non-contact single point measurement

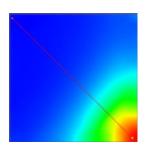
1.35

Non-contact imaging solutions

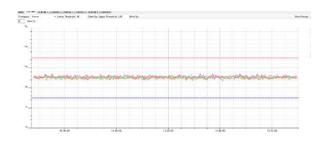

Inline / tool integrated

Introducing Four General Testing Setups

Portable testing


Non-contact single point measurement

l .						
2.35	1.73	1.84	1.89	1.79	2.01	3.48
1.68	1.13	1.20	1.23	1.17	1.19	1.95
1.62	1.14	1.21	1.25	1.15	1.16	1.94
1.65	1.17	1.26	1.35	1.20	1.21	1.94
1.71	1.14	1.21	1.24	1.16	1.19	1.99
1.76	1.14	1.19	1.20	1.15	1.22	2.14
4.20	2.01	2.13	2.00	1.96	2.34	4.24


Non-contact imaging solutions

Inline / tool integrated

Architectural Glass – LowE Coatings

Process Characterization

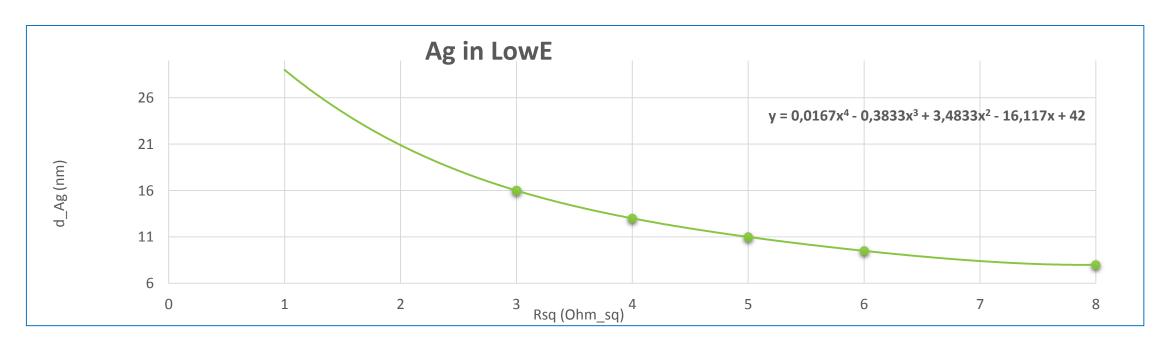
- Ag Deposition
- Tempering
- Final inspection (even in building inspection)

Environment

In-vacuo and ex-vacuo solutions

Setups

- In-vacuo after each Silver deposition enable the precise process control of each individual silver layer
- QA traversing system with optical and electrical sensor (eg. Zeiss)
- Portable

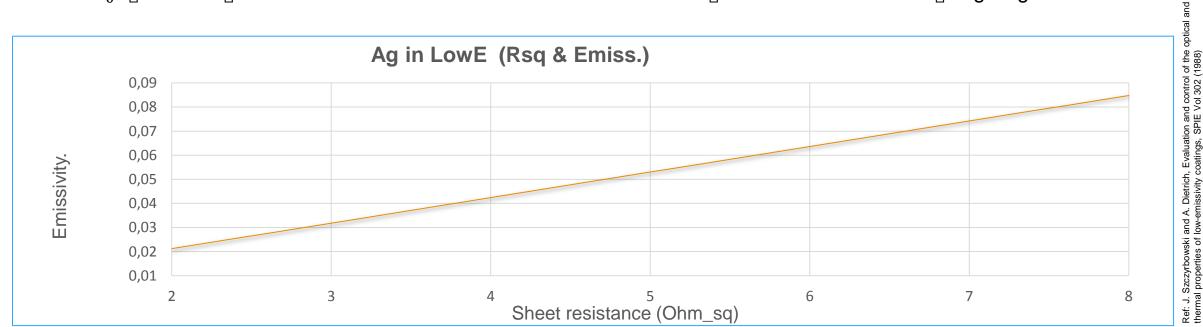

Measurements

Silver thickness, emissivity, sheet resistance

Silver Thickness and Sheet Resistance

• Numerical calculations show that the thickness correlates with the sheet resistance and may be written as $t = 0.0167 \times SR^4 - 0.3833 \times SR^3 + 3.4833 \times SR^2 - 16.117 \times SR + 42$

Emissivity and Sheet Resistance


• Numerical calculations show that the emissivity e does depend on sheet resistance and may be written as

$$e = 4e_0 R_{\Box} c = 0.1 R_{\Box} / 3\pi$$

or

 $e = 0.0106 R_{\Box}$

where R_{\square} is giving in Ω/\square

Emissivity and Sheet Resistance

Numerical calculations show that the emissivity e does depend on sheet resistance and may be written as

$$e = 4e_0 R_{\Box} c = 0.1 R_{\Box} / 3\pi$$

or

 $e = 0.0106 R_{\Box}$

where R_{\square} is giving in Ω/\square

- The industry adds typically some "safety markup" when applying this formula for QA and Process control. Often this formula is used $e = 0.0109 R_{\square}$
- This formula is valid for thin layer metal layers in the nm range
- This formula is in depended on the type of LowE. Oxide layers in-between metal layers affect the optical performance not the emissivity
- This formula requires that the top side encapsulation is thinner than 200 nm which is typically true

Customized Tempering Processes

Materials

Metal coatings (LowE-Ag)

Process Characterization

Tempering

Setups

- Portable
- Inline fix sensor
- QA traversing system

Measurements

Emissivity / Sheet resistanace

Customized Tempering Processes

- Tempering processes significantly change the emissivity
- Different types of LowE react differently towards tempering
- Tempering effect can be used to
 - Assess tempering homogeneity
 - Optimization of silver thickness considering tempering performance or even adapting tempering performance (idea)

	Gla	ss 1	Glass 2		
	A	В	D	С	
	non-		non-		
	tempered	Tempered	tempered	tempered	
Segment 1	0.023	0.009	0.039	0.024	
Segment 2	0.018	0.016	0.033	0.018	
Segment 3	0.019	0.019	0.048	0.037	
Segment 4	0.022	0.015	0.051	0.030	
average	0.021	0.015	0.043	0.027	
TNO	0.021	0.015	0.040	0.022	
SRUAGUS					
TF Portable Ohm/sq	1.81	1.40	3.74	1.90	
Emissivity TF portable	0.019	0.015	0.039	0.020	

Mirror coatings

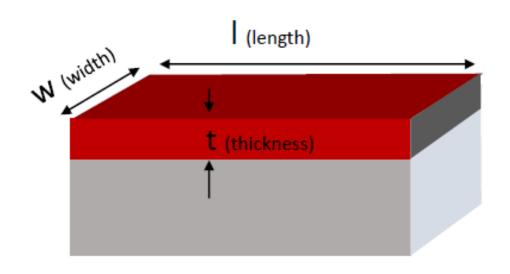
Materials

Metals (Ag, Cu, Al + combinations)

Process Characterization

Deposition

Environment


In-vacuo and ex-vacuo solutions

Setups

- Inline
- QA traversing system

Measurements

Thickness, metal area weight

Sheet resistance R_{\square} or $R_{\mathcal{S}}$ is derived by assuming that the film width equals the film length (w = I)

$$R = \frac{\rho}{t} \cdot \frac{l}{w} \equiv R_S \frac{l}{w}$$

The unit of R is Ω

The unit of R_S is Ω (Ω/\Box is typically used in order to distinguish between resistance)

Mirror coatings

Materials

Metals (Ag, Cu, Al + combinations)

Process Characterization

Deposition

Environment

In-vacuo and ex-vacuo solutions

Setups

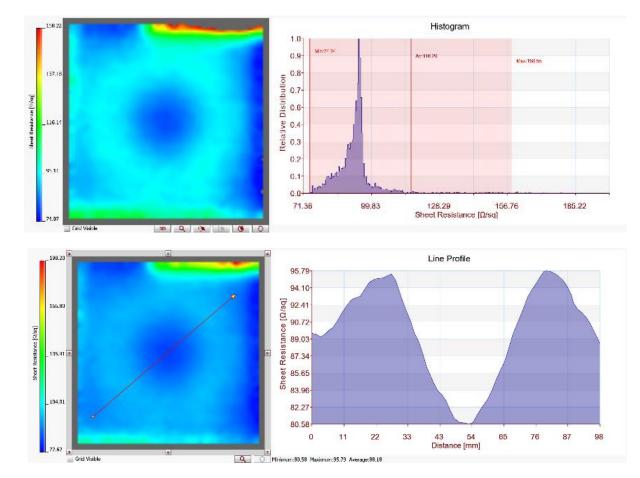
- Inline
- QA traversing system

Measurements

Thickness, metal area weight

Automotive Glass Testing

- Deicing
- LowE
- Hidden layer testing

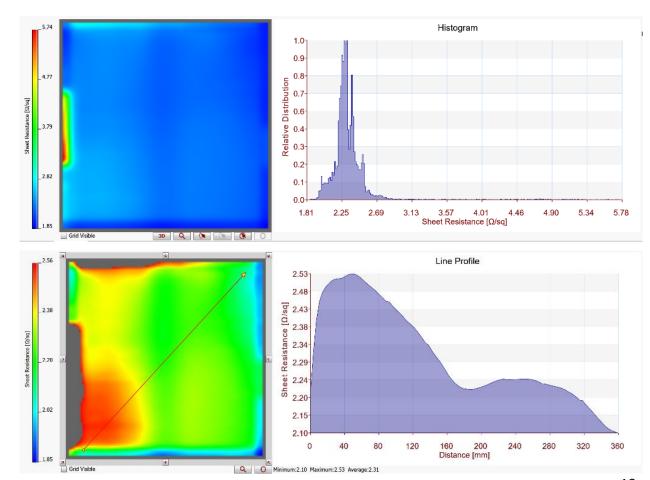

Electrode Characterization, e.g. Smart Glass or Solar Glass

Processes

- Depositing
- Doping
- Annealing

Aim

- Homogenous electrode function
- Meeting sweet spot transparency and sheet resistance

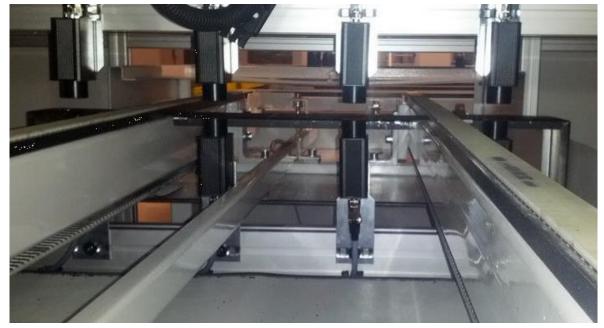

Electrode Characterization, e.g. Smart Glass or Solar Glass

Processes

- Depositing
- Doping
- Annealing

Aim

- Homogenous electrode function
- Meeting sweet spot transparency and sheet resistance


Electrode Characterization, e.g. Smart Glass or Solar Glass

Processes

- Depositing
- Annealing

Aim

- Homogenous electrode function
- Meeting sweet spot transparency and sheet resistance

SURAGUS inline testing installation at solar manufacturer, Germany

Summary

- Conductive coatings matter in glass industry
 - Architectural glass with LowE coatings emissivity testing
 - Mirrors thickness / reflection testing
 - Solar & smart glass sheet resistance testing
- Eddy Current Testing is Non-contact, High Speed and Enables High Resolution Solutions
- Eddy Current Testing Enables <u>Inline, Imaging, Single Point and Portable Testing</u>
- Measurements for <u>Deposition & Tempering Processes + Final Inspection</u>
- Measurement Characteristic are <u>Sheet Resistance</u>, <u>Emissivity and Layer Thickness</u>
- Insights and <u>Benefits</u> in Characterization of LowE, Mirror and Transparent Electrode Layers
 - Emissivity testing and Process Control for LowE coatings
 - Optimizing <u>tempering processes</u>
 - Ensuring the <u>electrical coverage and performance of transparent electrodes</u> for smart glass and deicing application
 - Measurement of <u>hidden conductive layers for automotive glass application</u>

Thank you for your attention!

For questions and requests please feel free to contact us...or see us at SURAGUS booth

Contact in Germany

Phone: +49 351 – 32 111 520

• Fax: +49 351 - 32 111 509

• info@suragus.com

http://www.suragus.com

