Learning Event 2018 - GPD Turkey


Glass Performance Days 2018 March 07-09, 2018, Istanbul, Turkey

Case study from
New Istanbul Airport – Largest in Europe

Window glass panel design methods

Mehmet Burak Yılmaz PhD, PE, M.ASCE, Structural Eng. mehmetburakyilmaz@macrostatic.com

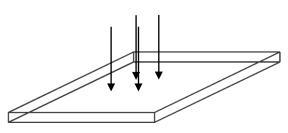
What does the window glass pane mean in terms of structural calculations?

Can **structural analysis** be
performed for non<u>structural</u> elements?

Is the window glass a non-structural element?

Which **loads & effects** should we take into consideration in the calculation of window panes?

Is there a **constant** value for the bending **strength** of the glass for all load situations?


Is there any **load**sharing between the inner and outer panes of IGU?

How should we combine the loads?

How does
interlayers of
laminated glass
affect the
calculations?

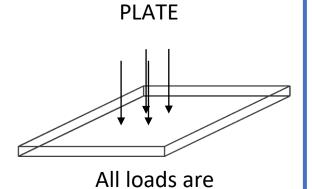
TYPE OF ELEMENT	TS .	USAGE IN FACADE
FRAME	a,b < 1/2	Aluminium curtain wall profiles, glass columns & beams, steel rods
PLATE, MEMBRANE, SHELL	$h: b \qquad h < \underbrace{a,b}_{10-20}$	Window glass panels, aluminium panels, connecting plates, etc.
SOLID	a, b, c can be any value	Silicone, bolts, screws, etc.

PLATE

All loads are perpendicular to the plane

FINALLY!

We assume that:


- Dead load (self load) of glass in vertical window glass panel is negligible for stress states. Because in-plane bending capacity of window glass panel is always adequate for standard application.
- Buckling of the panel is restricted by edge constraint conditions of pressure plates or structural silicone for standard application.
- The panel is supported by all sides. There is no point support.

We can analyse Window Glass Panel as a plate element

Now we have defined the type of the problem in structural theory.

perpendicular

to the plane

I want to celebrate the International Women's Day of all women and Sophie Germain.

$$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{q}{D}$$

Marie-Sophie Germain

Born 1 April 1776

Rue Saint-Denis, Paris, France

Died 27 June 1831 (aged 55)

Paris, France

Residence France Nationality French

Known for Elasticity theory and number

theory (e.g. Sophie Germain prime

numbers)

Scientific career

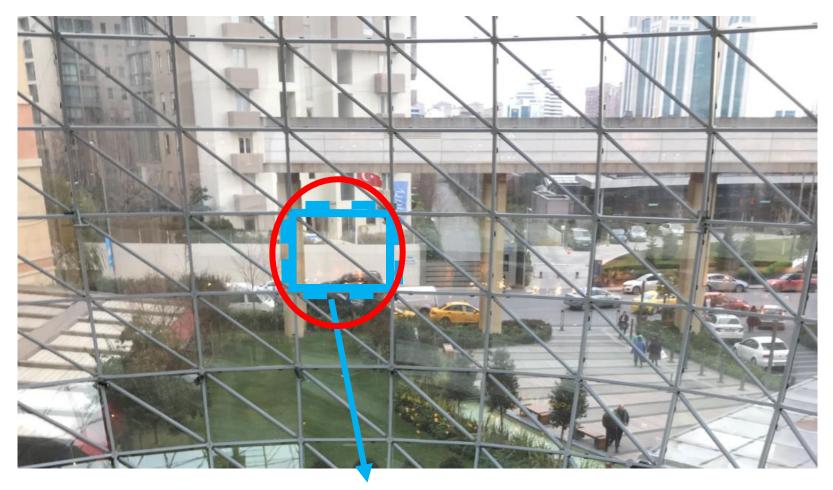
Fields Mathematician, physicist, and

philosopher

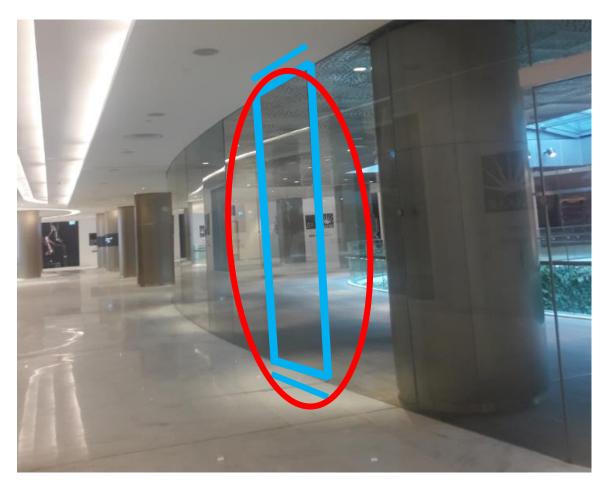
Academic Carl Friedrich Gauss (epistolary

advisors correspondent)

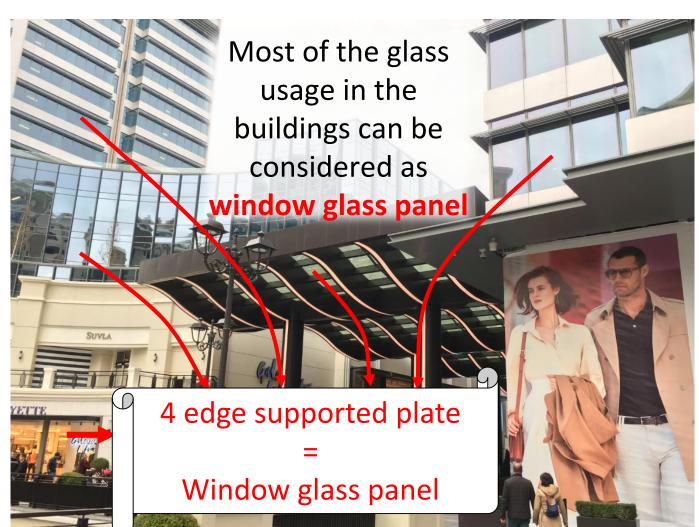
Notes


Other name: Auguste Antoine Le Blanc

LET'S TRY TO FIND
"WINDOW GLASS PANEL"
ON NEXT SLIDES



Column **FRAME**


Point supported **SHELL**

Local edge supported **SHELL**

Two-edge supported **SHELL** (buckling should be checked)

FINALLY!

DESIGN

1

DIMENSIONS OF PANEL AND INITIAL THICKNESS OF PANES 2

PURPOSE OF USAGE AND DETERMINATION OF LOADS 3

COMBINATION OF LOADS

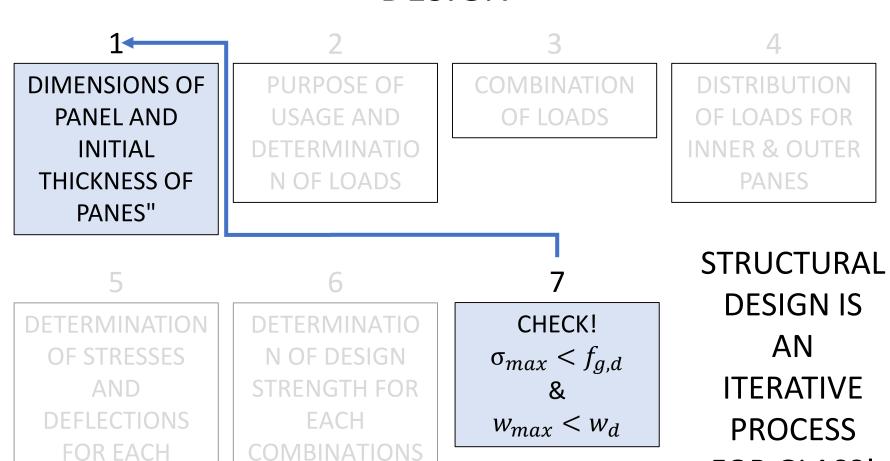
4

DISTRIBUTION
OF LOADS FOR
INNER & OUTER
PANES

5

DETERMINATION
OF STRESSES
AND
DEFLECTIONS
FOR EACH
COMB.

6


OF DESIGN
STRENGTH FOR
EACH
COMBINATIONS

7

CHECK! $\sigma_{max} < f_{g,d}$ &

$$w_{max} < w_d$$

DESIGN

FOR GLASS!

COMB.

LOADS

2

PURPOSE OF USAGE AND DETERMINATION OF LOADS

PURPOSE OF USAGE LOADS (ACTIONS)

Curtain wall infill Wind

Curtain wall & Barrier Snow

Skylight Dead Load

Skylight (only maintainance access) Altitute Load (ΔH , Δp)

Skylight (public access) Climate Load (seasonal, daily)

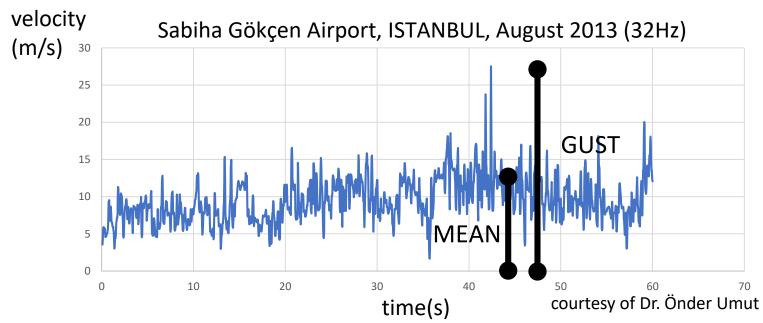
Blast resistant Solar Irradiance

Bullet shield Live Load

Space shuttles Soft body impact (Class)

(1200°C short period) Hard body impact, hail impact

Blast loads (TNT, petrochemical), bullet, fire etc.

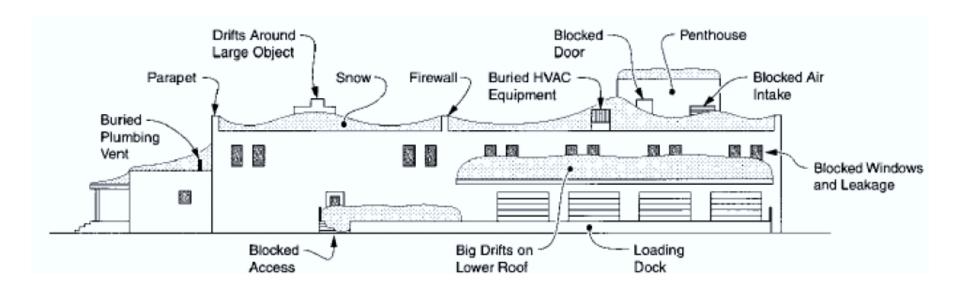

LOADS

PURPOSE OF
USAGE AND
DETERMINATION
OF LOADS

LOADS (ACTIONS)

Wind

duration?
Short, medium, long
effects on strength and rigidity



LOADS

PURPOSE OF USAGE AND DETERMINATION OF LOADS **LOADS (ACTIONS)**

SNOW

duration?
Short, medium, long
effects on strength and rigidity

WINDOW GLASS PANEL LOADS

LOADS (ACTIONS) ALTITUDE PURPOSE OF USAGE AND duration? **DETERMINATION** Short, medium, long **OF LOADS** effects on strength and rigidity $C_H\,\Delta H$ C_{H} : 0.012 kPa/m ΔH_{t2} ΔΗ ΔH_{t1}

LOADS

LOADS (ACTIONS)

PURPOSE OF USAGE AND DETERMINATION

OF LOADS

 $C_H\,\Delta H$

: 0.34 kPa/K

CLIMATE

duration? Short, medium, long effects on strength and rigidity

LOADS

PURPOSE OF
USAGE AND
DETERMINATION
OF LOADS

 Δp_{met} : changes in atmospheric pressure

(pa-pp)

LOADS (ACTIONS)

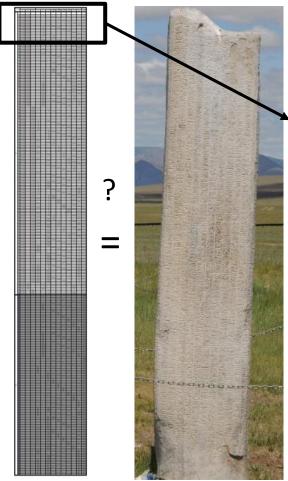
CHANGES in AP

duration?
Short, medium, long
effects on strength and rigidity

DESIGN

PURPOSE OF
USAGE AND
DETERMINATION
OF LOADS

COMBINATION
OF LOADS


Cons. C.

classes of consequences EN1990

CC1 (storage b., greenhouse, ..)
CC2 (residential, office, ..)
CC3 (public b., shopping malls, ..)
CC0 non-structural (extreme.
limited conseq)

DESIGN

Orkhon inscriptions??

COMBINATION

OF LOADS

LOADS (ACTIONS)

Wind Snow

Dead Load

Altitute Load (ΔH , Δp)

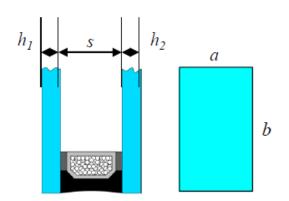
Climate Load (seasonal, daily)

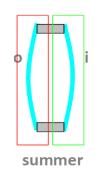
Live Load

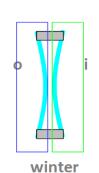
		EN16612												
	ı		G		Q									
		DL	ALs	ALw	SL	CLs	CLw	LL-Point- inner	LL-Point- outer	LL-Line- inner	LL-Line- outer	WLs	WLp	kmod
1	1	Y G	YG											0.29
	3	Y G	YG		Yq									0.45
4	4	Y G	YG			Yq								0.58
	5	Y G	Yg				Yq							0.58
(6	Y G	Yg					Υq						0.69
7	7	Y G	YG						Yq					0.69
	8	Ϋ́G	YG							Vα				0.89
9	9	Y G	Yg								Yq			0.89
1	LO	Y G	Yg									Yq		0.74
1	11	Y G	YG										Yq	0.74
1	12	Y G	YG		Ya	$\gamma_Q \Psi_{0,i}$								0.58
1	L3	Y G	YG		Y α		$\gamma_Q \Psi_{0,i}$							0.58
1	14	Y G	YG		Y α			$\gamma_{Q}\Psi_{0,i}$						0.69
1	L5	Ϋ́G	YG		Υq				$\gamma_{Q}\Psi_{0,i}$					0.69
1	16	Ϋ́G	YG		Υq					$\gamma_{Q}\Psi_{0,i}$				0.89
1	17	Y G	YG		Y Q						$\gamma_Q \Psi_{0,i}$			0.89
1	18	Y G	YG		Y Q							$\gamma_{Q}\Psi_{0,i}$		0.74
1	L9	Y G	YG		Y α								$\gamma_{\mathbb{Q}}\Psi_{0,i}$	0.74
2	20	¥g	Yg		$\gamma_Q \Psi_{0,i}$	VQ								0.58
_	21	¥g	YG			Yq	$\gamma_{Q}\Psi_{0,i}$							0.58
_	22	Y G	YG			Yq		$\gamma_{Q}\Psi_{0,i}$						0.69
_	23	Y G	YG			Yq			$\gamma_{\mathbb{Q}}\Psi_{0,i}$					0.69
	24	Y G	YG			Yq				$\gamma_{Q}\Psi_{0,i}$				0.89
_	25	¥g	Yg			Yq					$\gamma_{Q}\Psi_{0,i}$			0.89
i .	06			1	1		1	1	1	I	I	v.III		0.74

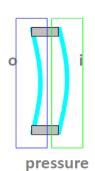
prEN16612:2017

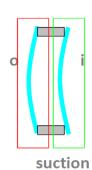
DESIGN

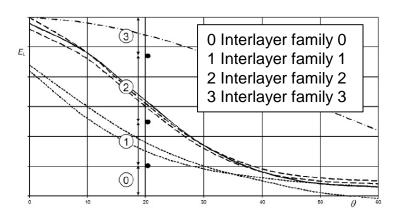

DIMENSIONS OF
PANEL AND
INITIAL
THICKNESS OF
PANES


PURPOSE OF USAGE AND DETERMINATIO N OF LOADS

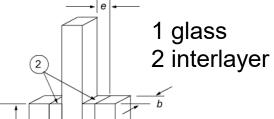

Viscoelastic beha. Load duration DISTRIBUTION
OF LOADS FOR
INNER & OUTER
PANES


4


Relative effective stiffness



DESIGN


INTERLAYERS

Polyvinyl butyral (PVB)
Ionoplast Polymers
Ethylene Vinyl Acetate (Cross-Linked EVA)
Cast in Place (CIP) liquid resin
Thermoplastic polyurethane (TPU)

4

DISTRIBUTION
OF LOADS FOR
INNER & OUTER
PANES

Viscoelastic properties of interlayers

prEN16613:2017

Load duration

Load case

WINDOW GLASS PANEL

DESIGN

Family 0

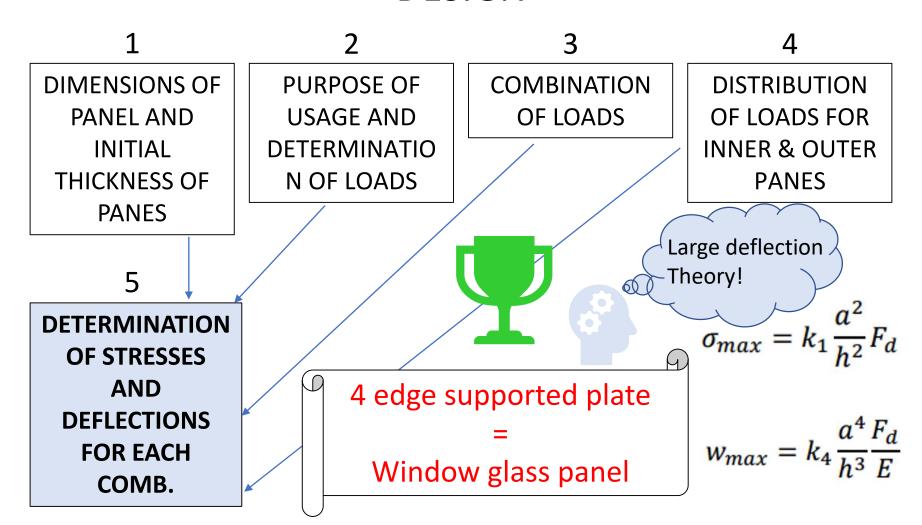
Table D.3 — Value of ω associated with interlayer stiffness family and load case

_	1	
	I	_

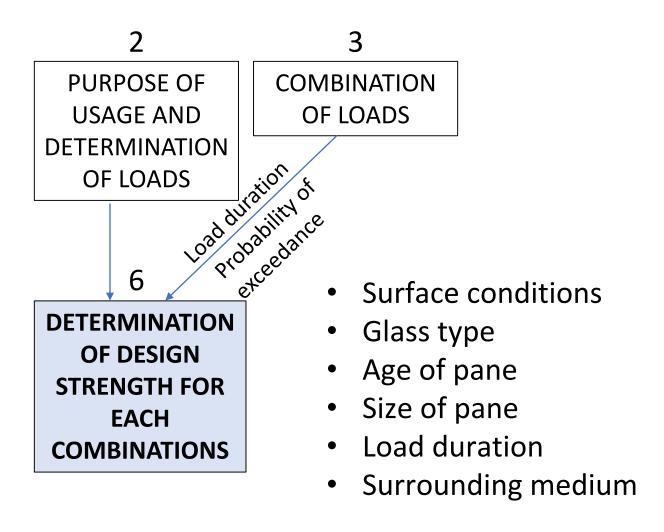
1				
	Wind gust load (Mediterranean areas)	0	?	?
2	Wind gust load (other areas)	0	0,3	0,7
3	Wind storm load (Mediterranean areas)	0	?	3/
4	Wind storm load (other areas)	0	?	3//
5	Personnel balustrade loads - normal duty	0	0,1	0,5
6	Personnel balustrade loads - crowds	0	0	0,3
7	Maintenance loads	0	0	0.1
8	Snow load - external canopies and roofs of unheated buildings	0	0,1	0,3
9	Snow load - roofs of heated buildings	0	0	0,1
10	Climatic loads on insulating glass units: summer	0	?	? -
11	Climatic loads on insulating glass units: winter	0	?	? 4
12	Permanent	0	0	0

DISTRIBUTION OF LOADS FOR **INNER & OUTER PANES**

> it's hard to determine! But it is worth!


$$h_{\text{ef;w}} = \sqrt[3]{\sum_{k} h_{k}^{3} + 12\omega \left(\sum_{i} h_{k} h_{m,k}^{2}\right)}$$
 Effective thickness

Viscoelastic beha.


Family 1

Family 2

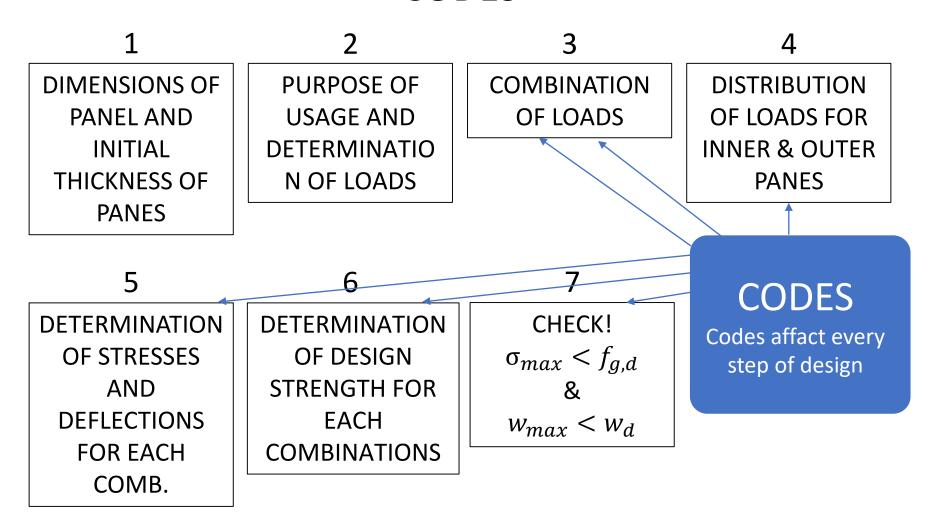
DESIGN

DESIGN

DESIGN

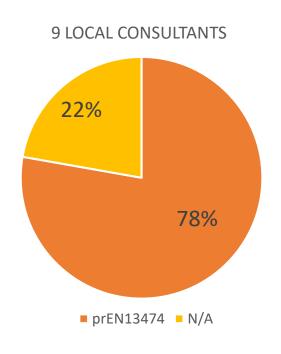
$$f_{g;d} = \frac{k_{\text{mod}} k_{\text{sp}} f_{g;k}}{\gamma_{\text{M;A}}} + \frac{k_{\text{v}} (f_{\text{b;k}} - f_{g;k})}{\gamma_{\text{M;v}}}$$

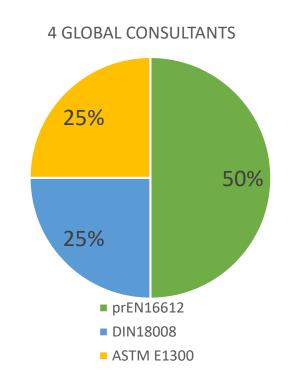
prEN16613:2017


6

OF DESIGN
STRENGTH FOR
EACH
COMBINATIONS

Duration	Example	<i>K</i> _{mod}
5 seconds	Single gust	1.00
30 seconds	Domestic balustrade load	0.89
5 minutes	Workplace/public balustrade load	0.77
10 minutes	Multiple gust (storm)	0.74
30 minutes	Maintenance access	0.69
5 hours	Pedestrian access	0.60
1 week	Snow load short-term	0.48
1 month	Snow load medium-term	0.44
3 months	Snow load long-term	0.41
50 years	Permanent (e.g. self-weight and altitude pressure)	0.29


	Base glass	Characteristic bending strength $f_{\rm b;k}$ (N/mm ²)					
	material	Thermally toughened	Heat- strengthened	Chemically toughened			
	Float glass or drawn sheet	120	70	150			


CODES

WINDOW GLASS PANEL CODES

GLASS DESIGN CODES FOR BUILDINGS IN TURKEY

THANK YOU FOR YOUR ATTENTION