SOME RECENT DEVELOPMENTS IN SPUTTER TECHNOLOGY

G. Bräuer, R. Bandorf, M. Keunecke, A. Pflug, B. Szyszka, V. Sittinger, M. Vergöhl

www.ist.fraunhofer.de

Outline

- Introduction
- HIPIMS ready for industry?
- Sputter technology for optical coatings
- Hollow cathode based sputter processes
- What comes next?
- Summary

Megatrends

- Climate Change
- Shortage of Resources
- Demographic Change
- Globalization

Innovations through thin films- increasing complexity

Deposition rates for various coating technologies

Technology	Deposition rate [nm/s]
Atomic Layer Deposition	0,1
Reactive pulse magnetron sputtering of TiO ₂	5
Reactive pulse magnetron sputtering of SiO ₂	5 – 10
Magnetron sputtering of metals	10 - 100
Plasmapolymerisation	10 - 100
Electron beam evaporation of metals	100 - 1.000
Thermal evaporation of metals	500 - 5.000
Electroplating of hard chrome	10 - 12
Electroplating of nickel	15 – 150
Atmospheric pressure plasma spraying	

Outline

Introduction

HIPIMS – ready for industry?

- Sputter technology for optical coatings
- Hollow cathode based sputter processes
- What comes next?
- Summary

What is HIPIMS?

- Plasma pulses with typical power from 1 MW up to 6 MW ("conventional": 50 kW)
- Voltage: 1 2 kV
 Current: up to 4 MA
- Duty Cycle 1 3 %
 → same mean power as for DC sputtering

Source: SVS Vacuum Coating Technologies

 high amount (50 – 70 %) of ionized sputtered species forming high quality dense films

GPD Tampere, June 28, 2017

"Conventional" magnetron sputtering and HIPIMS plasma

Application fields of HIPIMS coatings

- Coating of 3D structures (filling of trenches)
- Hard coatings for tribological applications (e.g. TiAIN)
- Coatings for precision optics
- Glass coating, e.g. transparent conductive films
- Sensors

GPD Tampere, June 28, 2017

Coating of 3D structures (trench filling)

Source: Prof. Ulf Helmersson, Linköping University

Deposition rates for HIPIMS

Low deposition rates can be improved by adding DC.

(Data taken from a planar magnetron 488 mm x 88 mm.)

TiO₂ deposition using various processes

Density (g/cm³)

HIPIMS ITO – coat and bend process for Low-E glass

The ice-free windshield

Source: Claes G. Granqvist, Transparent conductors as solar energy materials: A panoramic review, Solar Energy Materials & Solar Cells 91 (2007) 1529 - 1598

Increasing CO₂ emissions

Global CO₂ emission in 10⁹ tons

1

ALL EYES

1

WORKSHOP

Challenge: CO₂ reduction by friction reduction

Effects of the different parameters influencing fuel consumption and CO₂ emission in passenger cars can be summarized as:

- 10 % mass reduction
 10 % rolling resistance reduction
 10 % frontal area reduction
 5 % speed reduction
 5 % mechanical loss reduction
- \Rightarrow 8.3 % reduction in energy demand
- \Rightarrow 2 % reduction in energy demand
- \Rightarrow 2.2 % reduction in energy demand
- \Rightarrow 6 % reduction in energy demand
- \Rightarrow 1.5 % reduction in energy demand

Global fuel consumption for passenger cars 2009: 63 · 10¹⁰ liter (gasoline + diesel)

\rightarrow 1,5 %: 9,5 \cdot 10⁹ liter \rightarrow 23 \cdot 10⁶ t CO₂

Source: K. Holmberg, P. Andersson, A. Erdemir, *Global energy consumption due to friction in passenger cars*, Tribology International 47 (2012) 221.

need for tribological optimized solutions

DLC coatings – From research to markets

- Cutting tools
- Forming / Moulding
- Automotive / Racing
- Medical
- Decorative
- Sensors

Application of a-C:H and a-C:H:Me

WORKSHOP

Automotive components

High performance applications (Car Racing)

Mass volume production DLC

Mass volume other coatings

GPD Tampere, June 28, 2017

DLC films deposited with reactive HIPIMS Graphite Target, gas mixture of Ar, Ne, C₂H₂

0% C₂H₂, 15 GPa 4%C₂H₂, 28 GPa 5% C₂H₂, 53 GPa

Outline

Introduction

- HIPIMS ready for industry?
- Sputter technology for optical coatings
- Hollow cathode based sputter processes
- What comes next?
- Summary

What means »precision« in precision optics?

1980 2 – 3 % tolerance, 50+ layers

late 1990 < 1% tolerance, 100+ layers

JDSU 2012 ~ 0.5% (<u>+</u>0.25%), 75 – 1000 layers world record (JDSU): 4410 layers

Fraunhofer IST 2014 ~ 0.2% (<u>+</u>0.1%), 100+ layers

(Georg Ockenfuss, ICCG9, Breda 2012)

Magnetron sputtering as emerging deposition process for precision optics

Established:

evaporation high rate limited performance

»high end«:

ion beam sputtering low rate high performance

emerging:

magnetron sputtering high rate high performance

EOSS[®] – Enhanced Optical Sputter System

Main Features

- dual cylindrical magnetrons
- batch size: 10 substrates with Ø 200 mm
- fast turntable 250 rpm
- sputtering in metallic (with post oxidation) or reactive mode
- full optical control and process automation

EOSS[®] – Enhanced Optical Sputter System Setup at Fraunhofer IST

()

()

WORKSHOP

Cross fraction of a multilayer stack with included defect

10µm

Precision optics made on EOSS[®] Example: Bandpass filter for space mission

- IR bandpass filter
 - 137 layers
 - 14 µm total thickness
 - Ta₂O₅/SiO₂
 - Single side coating
- Broad blocking range 300-1100 nm
- Central wavelength tolerance 0,3% over several substrates
- High transmittance
- Space qualified

Precision optics made on EOSS[®] Example: Test of process stability

- Spectrum shows back side coating of a customer's filter
- 3 runs within 9 months (incl.: 1 new target)
- Test glasses had:
 - 18 layers
 - 3,6 µm thickness
- No visual difference in spectra
- Demonstrates the extremely high stability of refractive index and deposition rate

NORKSHOP

Precision optics made on EOSS®

Example: Antireflecitve coating on aspherical lenses

- Industrial application in retina scanners
- Strongly bended substrates
- Broad band AR in a wide range of angles required
- Complex stack: more than 50 layers
- Evaporation at its limit

Outline

Introduction

- HIPIMS ready for industry?
- Sputter technology for optical coatings
- Hollow cathode based sputter processes
- What comes next?
- Summary

Gas Flow Sputtering (GFS) and Inner Hollow Cathode Sputtering (IHC)

(9)

(1)

WORKSHOP

Example for technical application of magnetic thin films

- Use of magnetic thin films for high precision positioning systems
 - Compact
 - Insensitive against dust/contaminations
 - Resolution in the nanometer regime
 - Absolute positioning in the micrometer range
 - High demand on the fabricated magnetic thin films

Magnetic multilayer system made by GFS

GFS: Magnetic hysteresis behaviour for different substrate temperatures and bias voltages

Dynamic IHC: Pilot production

- Schematic of the setup for the dynamic deposition
- Reel-to-reel setup (driven by a stepper motor

GPD Tampere, June 28, 2017

Thermal barrier coatings produced by GFS Material: partly Y stabilized ZrO₂ (PYSZ)

Deposition by Thermal Spraying \rightarrow porous structure

Deposition by Electron Beam Evaporation (EBPVD) \rightarrow columnar structure

Source: Nicholls et al., Surf. Coat. Technol 151 (2002), 383

GPD Tampere, June 28, 2017

Deposition of thermal barrier coatings by GFS

Outline

Introduction

- HIPIMS ready for industry?
- Sputter technology for optical coatings
- Hollow cathode based sputter processes
- What comes next?

Summary

Main R+D efforts in magnetron sputtering during the past 35 years

- Improvement of target material utilization
- Stabilization of the reactive process in the transition regime
- Long term stable high rate deposition of dielectric films
- Improved film properties through HIPIMS
- Higher deposition rates

Magnetron sputtering through five decades

- The 1980s: The decade of reactive DC sputtering
- The 1990s: The decade of pulsed sputtering and higher target utilization
- The 2000s: The decade of higher ionization
- The 2010s: The deacade of higher ionization and higher precision
- What comes next?
- The 2020s: The decade of higher efficiency?

The sputter yield

Sputter Yield Y = number of emitted target atoms number of incident ions

19

WORKSHOP

Yield depends on:

- E₀ ion energy
- M_1 ion mass
- M₂ mass of target atom
- U₀ surface binding energy of target atom
- Θ angle of ion incidence
- T target temperature

The temperature dependence of the sputter yield

R. A. Haefer: *Oberflächen- und Dünnschichttechnologie* (*Teil 1: Beschichtungen von Oberflächen*), Springer Verlag, 1987

GPD Tampere, June 28, 2017

Sputtering from hot targets (HTS)

1

1

WORKSHOP

Outline

Introduction

- HIPIMS ready for industry?
- Sputter technology for optical coatings
- Hollow cathode based sputter processes
- What comes next?
- Summary

Summary

The manufacturers of hard coatings count on HIPIMS, but there is still a lot of work to establish the technology for glass coating.

Magnetron sputtering has entered the world of precision optics. In the near future large area optical coatings should be available at reasonable cost.

Hollow cathode based sputter processes have found niche markets, in particular when very thick coatings are required.

With $\eta \sim 2\%$ the efficiency of the sputter process is still much lower than the efficiency of a solar cell.

GPD Tampere, June 28, 2017

THANK YOU FOR YOUR ATTENTION!

