Recent Developments in Sol-Gel Processing -Multifunctional and Active Surfaces through Sol-Gel Processing and Wet Chemical Deposition Techniques Fraunhofer-Institut Silicatforschung Neunerplatz 2, D-97082 Würzburg gerhard.schottner@isc.fraunhofer.de

Contents

- Introduction Fraunhofer ISC and Glass Research
- Sol-Gel Processing Inorganic Thin Films and Hybrid Polymers
- Antireflective Coatings and Self-cleaning Surfaces for Glasses -Photocatalysis
- Scratch and Abrasion Resistant Coatings for Plastics Decoration of Glasses
- Multilayer Systems Passive Barrier Coatings
- Multifunctional and Active Layer Stacks In-line Coating Machines

Fraunhofer ISC Overview – "It's a material world"

Fraunhofer ISC - Core Competencies

Glass Technologies

Glass processing

- Glass production
- Pilot plant glass manufacturing devices

- REACH compliant glasses
- Porous glasses
- Optical glasses

• (Dental) glass ceramics

Solder glassJoining technologies

© Fraunhofer

Glass and REACH

REACH: Registration, Evaluation, Authorisation of Chemicals, (EU-Regulation Nr. 907/2006 - EU L 396 dated 29.05.2007)

Lead-free Glass Colours

New Class of Lead-free Ceramic Colors

Physical properties of best glass system

- glass system: ZnO, Al_2O_3 , B_2O_3 , $T_q = 740$ K
- melting temperature range: 800-900 K
- high brillance
- hydrolytic class HGB 1
- acid resistance
- contains oxides of Si, Zn, B, P, Na, Ti, Al and Ca
- colours: blue, green, white, black
- tunable thermal expansion
- screen printable

Properties of Coatings and Substrates

Sol-Gel Processing – Nucleation and Growth

particle growth and network formation largely depend on the pH-value of the solution

pH < 7

• gel formation: continuous solid network with solvent trapped in the pores

pH > 7

- particle growth: colloidal solution (sol state)
- salts enhance aggregation of particles at pH 7 – 10

Redispersible Nanopowders

Spray drying of surface modified silica sols (SiO₂)

redispersible in various solvents

processing of nanocomposites

application of particle mixtures of different size and type to increase packing density, improve X-ray scattering

Increase of Energy Efficiency through AR coatings

Optical Properties of Glasses

Applications of Nanostructures

Triple glazing units with higher light transmission

Feel-good glass

Antireflective

Crystal Growth of Titanium Dioxide

TiO₂ polymorphs:

Brookite, Anatase, Rutile, TiO₂ B

Eg = 3.1eV ρ = 4.250 g/cm³ $\Delta G_{f}^{\phi} = -212.6 \text{ kcoi/mole}$

TiO₆ octahedra share edges and corners

TiO₆ octahedra only share edges

H. le Roux, L. Glasser, J. Mater. Chem., 1997, 7(5), 843 - 851 A. L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 1995, 95, 735

Hydrothermal Synthesis of Nanocrystalline TiO₂-Dispersions

🗾 Fraunhofer

Fraunhofer ISC

Nanocrystalline Particles – Photocatalytic Effect

Photocatalytic Activity of Porous TiO₂-Coatings

Plastics with Photocatalytic Surfaces

Surface modification during processing/forming arm chair parts left : coated right: non-coated

- after 2 years exposure time
- at ambient conditios
- reduced growth of algae
- antimicrobial effects
- self-cleaning surfaces

Façade Panels Equipped with Photocatalytic Paint

Exposure conditions

- 2 years
- 45° south
- highly traffic loaded street in Stuttgart

Degradation of Organic Substances on Interior Paints

Degradation of Finger Prints and Superhydrophilicity

Hybrid Polymer Chemistry at Fraunhofer ISC

Scratch Resistant Coatings / Thermal and UV-Curing

Steel wool performance test

PMMA-Lenses

Glass Fiber Coatings – Ultrafast Curing Processes

SOLUTIONS Fraunhofer ISC

ISC

New Protective Hybrid Coating for Optical Strain Sensors

Commercial Product: Fiber-Bragg-Grating Sensors

© Fraunhofer

Multifunctional Coatings for Textile Fibers

Recent Results from R2R Processing

Barrier Sheets for Organic Photovoltaics and LEDs

Scavenger- and –Indicator Coatings for Food Packaging

- Development of hybrid coating systems (ORMOCERs) for plastic films
- Active, oxygen binding coating integrated in food packaging materials
- Indicator doped layers monitor oxygen uptake through discoloration
- Improvement of durability of foodstuff and control function for consumers
- In combination with passive barrier films suitable for technical areas requiring ultra high barrier functions

Decorative Coatings for Crystal Glass

Simple application and outstanding properties

Spraying technique for complex shapes

Excellent adhesion and abrasion resistance

High colour intensity and variability

Glass-like appearance and touch

© Fraunhofer

Low Surface Free Energy for Glass Containers

Protective Hybrid Coating for Historical Glasses

Herrgottskirche Creglingen (DE) – Outside view (2010)

© Fraunhofer

Application of Protective Coating for Historical Glasses

Coated with hybrid material in 1988 Spectroscopic investigation in 2010

Raman Microscopy – Excitation in the Vis-/NIR-range

488 nm (Ar+)

514 nm (Ar⁺) 633 nm (He-Ne) 785 nm (Diode)

Principle of Confocal Micro-Raman-Spectroscopy

ISC

© Fraunhofer

Micro-Raman-Spectrum of the ORMOCER®-Coating

ISC

Calculation of the Costs of a Hybrid Polymer Coating

Assumptions:

- Dry film thickness 5 $\mu m \rightarrow$ ca. 40 % of the wet film thickness
- Wet film thickness: 12,5 µm
- Yield: 20 to 100 % (depending on the coating method)
- Consumption per m²: 12,5 to 62,5 ml
- Coated area (1 Liter): 16 to 80 m²

Typical Coating Formulation

Volume [l]	Cost [€]	Cost/Liter [€/I]
1	600	600
2	700	350
5	750	150
10	900	90
20	1300	65
50	2500	50
100	4000	40

Typical Coating Techniques

Worst case

- Spraying of small parts (80 % overspray)
- Low volume application (high cost/l)
- > <u>21,90 €/m²</u>

Best case

- Dip coating procedure (ca. 100 % yield)
- High volume application (low cost/l)
- ≻ <u>0,50 €/m²</u>

Typical Coating Techniques

Case 3

- Spraying of small parts (80 %) overspray)
- High volume application (low cost/l)
- > 2,50 €/m²

Case 4

- Dip coating (ca. 100 % yield)
- Small volume application (high cost/l)

> 4,40 €/m²

R2R Production of Ultrabarrier Foils (UBF)

Application of very thin hybrid films (< 100 nm)

Schematic view of closed R2R coating machine (dustfree application)

Schematic of R2R Coating Equipment

Realized Configuration of R2R Coating Machine

EU-Project INNOSHADE – Electrochromic plastic glazing based on PEDOT-derivatives

Benefits

- Large-scale, cost-effective, light impactresistant ECD technology – compatible with plastic substrates
- Short reaction time even with more expensive components at low energy consumption
- Modular production process enables high performance in production and assembly lines, e.g. in roll-to-toll process
- High stability despite varying strain

Manufacture of Multilayer Systems via R2R processing

Electrochromic thin films

Thank you for your attention!

Dr. Gerhard Schottner Fraunhofer-Institut für Silicatforschung ISC Neunerplatz 2 | 97082 Würzburg | Germany

+49 931 4100-370 gerhard.schottner@isc.fraunhofer.de www.isc.fraunhofer.de

ZAHA HADID ARCHITECTS

© A. Schollenberger für Fraunhofer ISC