

A Summary Presentation of GPD Finland 2015: ENERGY

INNOVATION • BUSINESS • DESIGN

Tapping into the potential of the building sector

- 'Energy efficiency first' principle
- Buildings (and transport) as priority sectors where energy efficiency gains must be reaped
- Focus of financial and regulatory efforts in these sectors
- Need to empower consumers in the energy transition

Over 40% of EU energy consumption from buildings

INNOVATION • BUSINESS • DESIGN

41.5% of Energy Consumption goes to Buildings

Total 2009 US Energy Consumption by Sector (Source: US Energy Information Administration)

Summary of GPD – 2015, J.Vitkala Source: <u>www.gpd.fi</u> ©Patrica R. Athey, PPG Industries Inc

Energy Loss in Buildings

US buildings account for:

- 71% of electricity
- 39% of total energy

Energy Loss Through the Windows has the Largest Impact of Any Building Envelope

An energy efficiency tool for consumers

EU energy labelling:

- To inform consumers about the energy-efficiency of products
- Support the market uptake of best-in-class solutions
- Be condusive for innovation

• The EU challenge:

- From energy-using products to energy-related products
- Can it work for building products?

Updated regulatory framework in place to make it happen:

- Revised Energy Labelling Directive (2010)
- Working Plan for 2012-2014: Windows in the "priority product groups"
- New Methodology for the Ecodesign of Energy related Products (MEErP)

BUILDING ORIENTATION - Energy Management

News Building, Danish Broadcasting Corporation Climate Strategy

Design Building Energy Perf. & Aesthetics by Climate Zone

Summary of GPD – 2015, J.Vitkala
Source: www.gpd.fi ©Patrica R. Athey, PPG Industries Inc

University of Copenhagen Royal Library Amager

Summary of GPD – 2015, J.Vitkala Source: www.gpd.fi ©Oliver Ng, BG&E

INNOVATION • BUSINESS • DESIGN

Criteria for Selecting Optimal Facades

Energy / Carbon

- Comfort
- View/Privacy
- Security
- Acoustics
- Structure
- Recycled Materials

- Daylight
- Aesthetics
- Weatherproof
- Cleaning
- Maintenance
- Durability

Check: Where is the Real Cost in Buildings?

Annual Energy Costs in Perspective:

Occupancy Costs = 100 x Energy Cost

Cost / Sq. M. Floor -Year

Energy Cost: \$50.00

• Rent: \$500.00

• "Productivity" \$5000.00+

Smart Integrated Systems will Improve Comfort!

The Integrated Façade/Lighting System "Challenge"

Facade

Solar intensity

Daylight, glare

Shade position

Lighting

Occupancy

Illuminance level

Energy use

HVAC

Outdoor and indoor temp

Heat/ cool/ econ mode

COP

VIG VACUUM INSULATING GLASS

Glass Of The Future?

highly thermally insulating glazing — VIG — vacuum insulating glaizing

two panes of glass hermetically sealed at the edges and separated by an evacuated gap, maintained under the influence of atmospheric pressure by an array of spacers

VIC - The mechanical performance

Image reproduced from the work of, and with the permission of, Prof. (emeritus) Richard E. Collins

Multiple-pane insulating glass

Energy required to manufacture the additional chamber

Outlook from 3-pane to 4-pane glass

Ug-value improvement when changing from 3-pane to 4-pane glass $0.6 \text{ to } 0.3 = \Delta - 0.3 \text{ W/(m}^2\text{K)}$

Calculations: University of Kassel – CESR Ug value of quadruple glazing: IFT calculation

The primary energy analysis includes all energy costs and conversion losses for supplying the fuel from the source to the furnace room ("cumulated energy demand" CED).

^{*} Room temperature 20°C (standard climate D according to PHPP)

^{**}Assumption: central heating with a gas condensing boiler.

Targets for the insulating glass of the future

Which technologies can we use to meet these targets?

The following technologies:

- Quadruple-glazed insulating glass
- Thin glass technology
- New edge bond

Facilitate:

- U value of 0.3 W/m²K (with argon)
- Lowering the primary energy requirement for manufacturing
- Reducing weight and costs
- Frameless, self-supporting structure

Measuring gas concentration without breaking the IGU – even on triples

Source: www.gpd.fi © Miikkael Niemi, Sparklike

INNOVATION • BUSINESS • DESIGN

IGU – for standard to premium sizes

18.00 m x 3.21 m for coated glass; maximum thickness 20 mm.

9.00 m x 3.21 m for tempered glass (toughened/heat strengthened safety glass) and laminated glass (in exceptional cases up to 15 m)

7.20 m x 2.00 m for printed, tempered glass

6.00 m x 3.00 m for printed, tempered glass

15.00 m x 3.21 m for premium insulating glass units (IGU)

9.00 m x 3.21 m for economic insulating glass units (IGU)

6.00 m x 3.21 m for standard insulating glass units (IGU)

FUTURE ENERGY MANAGEMENT SMART WINDOW

Smart Window Technologies

