

trosifol world of interlayers

kura*ray*

Agenda:

- Trosifol World of Interlayers -
- Laminated glass
- Interlayers
- Which interlayer for which application?
 - Performance
 - Safety
 - Structural
 - Acoustic
 - Security and Disaster mitigation
 - UV control
 - Decorative
 - Quality
 - Clarity
 - Edge integrity

Trosifol: Part of the Kuraray family

3/13/2018

Glass is a fantastic material...

March 13, 2018

Marina Bay Sands, Singapore

Shanghai Tower

...but sometimes it breaks.

Wikipedia, building in Texas after

Laminated glass and interlayer - basics

A laminated glass is a sandwich of glass - Interlation

- A laminated SAFETY Glass meets the following (
 - To The interlayer ensures that in case of glass breakage the spalls stick to the interlayer..

- The laminated glass is classified according to a safety standard

From automotive to architectural requirements:

80 years ago; automotive windscreens : PVB:

.Single ball drop test requirement \rightarrow 0.76mm PVB

- Durability meets requirements of automobile lifetime.
- Crash protection: lowest possible head-injury risk, protection against being thrown out of the car
 requires soft and flexible film!

40 years ago: Architectural applications:

- Compound effect, spall adhesion
- Extended range of Safety and security performance
- No 'high speed head injury risk \Rightarrow allows application of interlayer with increased stiffness
- High requirements on dimensional stability of glass laminate, safe post-breakage behavior especially for overhead glazing
- Continuously Increasing glass size for higher transparency and aesthetics.
- Value added requirements in acoustic, decoration and UV performance.
- Standard PVB followed by Enhanced interlayers

Laminated safety glass - demonstration

Trosifol Business

Lamination Process

Roller line

Vacuum bag & ring line

- ✓ Complex glass make-up
 - ✓ Curved
 - ✓ Multi-lam
 - ✓ Anti-Spall
- ✓ Heat-treated glass
- ✓ Autoclave free process

Interlayer families

- PVB's
- Ionoplasts

Special applications:

- PET/ PVB by layers
- EVA
- PC/PU
- CIP's

Which interlayer for which application?

Performance: Safety

Safety Glass with PVB

- PVB = Polyvinyl Butyral, :
- Industrial Standard (since ~ 1930's)
- Today Standard PVB covers around 70% of laminated glass demand
- Modified PVB for enhanced Performance
 - Acoustic performance
 - UV filtration
 - Decoration
 - Structural interlayers: Stiff PVB

Standard PVB (plasticizer ~30pph)

Application:

- 4-sided supported glass
- 1-3 side & minimally supported glass
 - Lower post breakage performance
- Primary Benefit:
 - Enhance glass safety and security through fragment retention and penetration resistance
 - EN12600, ASTM Z93...
- Other benefits:
 - Acoustic performance
 - UV Protection
 - Blast performance where need for a a compliant interlayer is required
- Limitation:
 - Strength
 - Increased weight vs monolithic
 - Size limitation
 - Post breakage performance
 - Tempered glass

Which interlayer for which application?

Performance: Structural

Structural interlayers

Application:

- 1-3 side supported glass + minimally supported
 - High post-breakage performance
 - Low glass thickness
- Structural balsutrades
- Skylites , floor and canopies

Primary Benefit:

- Glass thickness/weight reduction
- Glass size increase

Other benefits:

- Enhance glass safety and security through fragment retention and penetr resistance
 - EN12600, ASTM Z93...
- UV Control
- Blast performance where need for a stiff interlayer is required

Limitation:

- Acoustic performance

Structural Interlayers

Interlayer performance comparison

tros	ifol™
world	of interlayers

	Relaxation	Product	Load d	uration									
	modulus G [N/mm ²]	type	3 sec	30 sec	1 min	5 min	30 min	1 hour	1 day	5 days	3 weeks	1 month	1 year
	10°C	Trosifol® PVB	-			-							
	Temperature	Trosifol® Extra Stiff	699	603	573	502	420	388	234	157	95	80	19
		SentryGlas®	236	228	225	220	217	206	190	178	172	171	161
	20°C	Trosifol® PVB	8		1.6			0.8	0.5	-	•	0.4	0.3
	Temperature	Trosifol® Extra Stiff	342	230	196	122	55	37	5.3	2.8	2.0	1.9	1.6
		Other Stiff PVB	325	-	•	-	-	96	21	-	•	3.0	1.0
2		SentryGlas®	211	206	195	188	175	169	146	130	115	112	96.5
	30°C	Trosifol® PVB	1		0.8		•	0.4	0.3			9.1	0.1
	Temperature	Trosifol® Extra Stiff	58	14	9.2	4.0	2.3	2	1.6	1.6	1.5	1.5	15
S		Other Stiff PVB	97	-	•	-	-	2.4	0.8	-	•	0.5	0.1
ш		SentryGlas®	141	119	110	82.8	66.1	60	49.7	24.7	12.9	11.6	6.8
•	40°C	Trosifol® PVB	0.6	•	0.5	•	•	0.2	0.2			0.1	0.1
ט	Temperature	Trosifol® Extra Stiff	3.4	1.9	1.8	1.6	1.6	1.6	1.5	1.5	•	1.5	•
Λ		Other Stiff PVB	6	•	•	•	-	0.6	0.4	•	•	0.2	•
$\overline{\mathbf{n}}$		SentryGlas®	63	36.6	30.7	19.4	11. 4	9.3	4.5	3.6	3.4	3.3	3.1
>	50°C	Trosifol [®] PVB	0.4	•	0.3	•	•	0.1	0.1			0.1	0.1
<u>,</u>	Temperature	Trosifol® Extra Stiff	1.7	1.6	1.6	1.5	1.5	-	•	-		-	•
		Other Stiff PVB	1	-	•		-	0.4	0.2	•	•	•	•
		SentryGlas [®]	26.4	13.5	11.3	7.3	4.9	4.2	2.8	2.4	2.2	2.2	2.1
	60°C	Trosifol® PVB	•	•	•	•	•	•	•	-			•
	Temperature	Trosifol® Extra Stiff	1.6	1.5	1.5	•	-	-	•	-		-	•
		SentryGlas®	8.2	4.3	3.7	2.6	1.9	1.7	1.3	1.2	1.2	1.1	1.0
	70°C	Trosifol [®] PVB	•	•	•	•	•	•	•				•
	Temperature	Trosifol® Extra Stiff	•	-	•	•	-	•	•	-			•
		SentryGlas®	2.9	2.1	1.9	1.4	1.0	0.8	0.6	0.6	0.5	0.5	0.5
	80°C	Trosifol [®] PVB	•		•	•	•	•	•	-		-	
	Temperature	Trosifol® Extra Stiff	•	-	•	•	-	•	•	-	-	•	•
		SentryGlas [®]	1.3	1.0	0.8	0.6	0.4	0.3	0.3	0.2	0.2	0.2	0.2

Conditions where Ionoplast and Stiff PVB have equivalent performance

Comparison Shear Modulus

Room Temp. Sce
(21° C)Image: Comparison of the comparis

Trolif 52- mm Stiff BYB

1.52 mm lonomer 19

Load Case

Cost control through glass thickness reduction:

Cantilevered Balustrade with Handrail- 3kN Line load

Interlayer Type	Glass Specification-mm	Comparison of glass thickness as a %	Peak Deflection- mm	Peak Stress- N/mm ²	Weight of glass	Cost Comparison %
PVB	15 temp/1.52mm PVB/temp HST	125	13.73	33.44	130Kg	125%
lonoplast	12 temp/0.89mm SGIonoplatP/12 temp	100	13.38	32.87	105 Kg	100%
Monolithic	25mm	105	12.4	31.25	103 Kg	137%

Which interlayer for which application?

Performance: Acoustic

3/13/2018

trosi

Interlayer	Rw (C,Ctr) [dB]
Annealed glass	33 (-1/-2)
SentryGlas 0,89mm	35 (-2/-3)
TROSIFOL ES 0,76mm	35 (-1/-3)
TROSIFOL BG 0,76mm	35 (0/-2)
TROSIFOL SC+ _{0,76mm}	38 (-1/-3)
TROSIFOL SC 0,76mm	38 (0/-2)

Thumb rule

Monolithic \Rightarrow Laminate with acoustic PVB: +4 dB

How can I achieve noise insulation with monolithic glass, reduce weight of the construction and save costs? Laminated glass

0,76 mm

trosifol[™] world of interlayers

The acoustic vs.weight performance optimization Paradox

- Improved performance of laminated glass components?
- Improved window systems?

Performance: Security & Disaster Mitigation

Security and disaster mitigation

Which interlayer for which application?

Performance: UV control

UV transmittance vs wave length

March 13, 2018

Trosifol Business

Performance: Decoration

Decoration enancing interlayers:

- Coloured interlayers
- Printed Interlayers
- Decorative inclusions
- Embeded materials

Which interlayer for which application?

Quality: Clarit

Виластия 0(732) 2.20000 (7 × 0,76emm)	TROSIFICA. BG R15 Z.38 from Clear	

 $_{Me}$ All data measured in accordance with ASTM D 1003 and ASTM E 313 (*) on 3 mm low iron glass / total interlayer thickness approx. 7.6 mm / 3 mm low iron glass.

Which interlayer for which application?

Quality: Edge integrity

Edge integrity

Factors influencing:

- Lamination process
- Quality of glass flatness
- Cutting process
- Glass Installation
- Fixation system
- Edge exposure to:
 - Moisture
 - Temperature
 - Sealants
- And...
- Interlayer selection

Edge discoloration: Salt spray test

Trosifol® BG R20 Laminate

Thank you!

Codes and glass thickness design

- Viscoelastic properties of the interlayer
- E and G modulus
- Poisson coefficient.
- FEMA techniques

You	ung's Modulus E			Loa	ad Durati	ion		
MP	a (psi)	1 s	3 s	1 min	1 h	1 day	1 mo	10 yrs
	10 °C	692.	681.	651.	597.	553.	499.	448.
	(50 °F)	(1.00 E+05)	(98745)	(94395)	(86 565)	(80 185)	(72 355)	(64960)
	20 °C	628.	612.	567.	493.	428.	330.	256.
	(68 °F)	(91060)	(88740)	(82215)	(71 485)	(62 060)	(47 850)	(37 120)
	24 °C	581.	561.	505.	416.	327.	217.	129.
	(75 °F)	(84245)	(81345)	(73225)	(60 320)	(47415)	(31465)	(18705)
0	30 °C	442.	413.	324.	178.	148.	34.7	15.9
Inter	(86 °F)	(64090)	(59885)	(46980)	(25810)	(21460)	(5032)	(2 306)
erat	40 °C	228.	187.	91.6	27.8	13.6	9.86	8.84
du	(104 °F)	(33060)	(27115)	(13282)	(4031)	(1972)	(1430)	(1282)
Ter	50 °C	108.	78.8	33.8	12.6	8.45	6.54	6.00
	(122 °F)	(15660)	(11426)	(84901)	(1827)	(1225)	(948.3)	(870)
	60 °C	35.3	24.5	10.9	5.10	3.87	3.24	2.91
	(140 °F)	(5119)	(3 5 5 3)	(1 581)	(739.5)	(561.2)	(469.8)	(422)
	70 °C	11.3	8.78	5.64	2.52	1.77	1.44	1.35
	(158 °F)	(1639)	(1273)	(817.8)	(365.4)	(256.7)	(208.8)	(195.8)
	80 °C	4.65	3.96	2.49	0.96	0.75	0.63	0.54
	(176 °F)	(674.3)	(574.2)	(361.1)	(139.2)	(108.8)	(91.4)	(78.3)

Codes and glass thickness design

- Coupling factor method
- Example: prEN 16612 & 16613
- Simplified method
- Product family concept
- No optimization per product

 $h_{ef;w} = \sqrt[3]{\sum_{k} h_{k}^{3} + 12\omega(\sum_{k} h_{k} h_{m,k}^{2})}$

Table 11 — Value of ω associated with interlayer stiffness family and load case										
Load case	Family 0	Family 1	Family 2	Family 3						
Wind load (Mediterranean areas)	0	0	0.1	0.6						
Wind load (other areas)	0	0.1	0.3	0.7						
Personal load – normal duty	0	0	0.1	0.5						
Personal load – crowds	0	0	0	0.3						
Glass for walking on for maintenance	0	0	0	0.1						
Snow loads – external canopies	0	0	0.1	0.3						
Snow loads – roof	0	0	0	0.1						
Permanent loads	0	0	0	0						