Is hypertension still a problem?

Ilkka Pörsti

Faculty of Medicine and Health Technology
FI-33014 University of Tampere
Finland

Email ilkka.porsti@tuni.fi

High blood pressure: worldwide the most significant risk factor causing deaths and disability

20 leading risk factors causing disability-adjusted life-years

Premature vascular ageing in CKD patients

- ~85% of CKD patients are hypertensive
- CKD patients with normal BP better preserve their GFR than hypertensive CKD patients
- Lower BP target (<130/80) is associated with better renal outcomes in patients with proteinuric CKD
- Intensive BP control lowers mortality risk among trial participants with hypertension and CKD

Volume wave, pressure wave, reflected pressure wave

Modified from O'Rourke and Hashimoto *J Am Coll Cardiol* 2007;50:1–13.

Pulsatile flow in small arteries

Hashimoto *Tohoku J. Exp. Med.*, 2014, 233, 1-8.

2018 ESC/ESH Guidelines: management of hypertension

Table 23 Office blood pressure treatment target range

Age group	Office SBP treatment target ranges (mmHg)					
	Hypertension	+ Diabetes	+ CKD	+ CAD	+ Stroke ^a /TIA	
18 - 65 years	Target to 130 or lower if tolerated Not <120	Target to 130 or lower if tolerated Not <120	Target to <140 to 130 if tolerated	Target to 130 or lower if tolerated Not <120	Target to 130 or lower if tolerated Not <120	70–79
65 - 79 years ^b	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	70–79
≥80 years ^b	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	Target to 130-139 if tolerated	70–79
Office DBP treatment target range (mmHg)	70–79	70–79	70–79	70–79	70–79	

CAD = coronary artery disease; CKD = chronic kidney disease (includes diabetic and non-diabetic CKD); DBP = diastolic blood pressure; SBP = systolic blood pressure; TIA = transient ischaemic attack.

2018 ESC/ESH Guidelines: management of hypertension

Table 23 Office blood pressure treatment target range

BP targets in renal patients

- Strategies for treatment of hypertension in CKD (2018)
 - Office SBP to 130–139 mmHg
 - Office DBP to 70-79 mmHg
- BP goal <130/80 evidence-based in CKD (2019)
 - Attention to measuring BP accurately, assessing patient preferences and concurrent medical conditions, and monitoring for adverse effects
- CKD in diabetic patients, class I level A evidence (2020)
 - Individualized treatment, SBP target <130 mmHg if tolerated, not <120 mmHg
 - Age >65 years: SBP goal 130-139 mmHg
 - DBP target <80 mmHg, not <70 mmHg

Accuracy of cuff-measured BP SBP underestimated by 6 mmHg

Picone et al. Journal of the American College of Cardiology 2017; 70(5): 572–586.

Accuracy of cuff-measured BP DBP overestimated by 6 mmHg

Author(s) and Year	Patients	Altogether 74 studies with 3073 participants	Mean Difference [95% CI]				
Berliner et al, 1961	100	HEH	6.6 [4.4 , 8.7]				
Bos et al, 1992	57	HERE	1.9 [0.3 , 3.5]				
Cheng et al, 2010	100	-	5.8 [4.4 , 7.2]				
Cheng et al, unpublished	14	——	5.4 [0.4 , 10.5]				
Ding et al, 2013	33	⊢ ⊪	-1.3 [-3.8 , 1.2]				
Freis et al, 1968	6	H al et	8.7 [7.1,10.4]				
Gelman et al, 1981	5	<u> </u>	1.0 [-5.9 , 7.9]				
Gould et al, 1984	28	⊢	10.4 [6.9 , 13.8]				
Hayashi et al, 2014	55	H=H	5.0 [2.8 , 7.3]				
Hunyor et al, 1978	9	H=	8.0 [4.0 , 12.0]				
Lin et al, 2012	78	⊢	7.0 [4.7 , 9.2]				
Melamed et al, 2012	3		1.3 [-11.8 , 14.4]				
Muecke et al, 2009	2	ļ ———	9.6 [1.6 , 17.7]				
Omboni et al, 1997	12	H■H	15.4 [12.9 , 17.8]				
Picone et al, unpublished	40	₽⊞1	6.9 [5.4, 8.4]				
Pucci et al, unpublished	29	- -	1.1 [-1.1 , 3.3]				
Raftery and Ward, 1968	50	⊢ ■→	6.1 [3.4, 8.9]				
Roberts et al, 1953	47		-2.8 [-5.9 , 0.3]				
Mean difference model for	all studies	◆	5.5 [3.5 , 7.5]				
	Intra-arte	erial brachial DBP higher Brachial cuff DBP higher					
		-12.0 0.0 8.0 16.0					
Mean Difference Between Brachial Cuff and Intra-Arterial Brachial DBP							

Accuracy of cuff-measured BP Brachial PP underestimated by 12 mmHg

Altogether 74 studies with 3073 participants

Hypertension (elevated blood pressure (BP)) is the single largest risk factor for cardiovascular disease mortality

Non-invasive brachial (upper arm) cuff BP is the principal method for hypertension diagnosis and management

Does the cuff accurately measure BP?

For patients with Normal BP <120/80 mm Hg

Reasonable confidence can be placed in cuff BP readings For patients with
Prehypertension (≥120/80 to <140/90 mm Hg)
or Stage 1 hypertension (≥140/90 to <160/100 mm Hg)

Cuff **overestimates** diastolic BP at brachial and aortic level
Cuff **underestimates** systolic BP at brachial level
Cuff variably **under- or overestimates** SBP at the aorta

Improved accuracy is recommended

For patients with Stage 2 hypertension ≥160/100 mm Hg

Reasonable confidence can be placed in cuff BP readings

Age and cuff-based blood pressure

- 31 studies with 1674 patients undergoing coronary angiography
- 22 different cuff BP devices:
 19 oscillometric,
 1 automated auscultation,
 2 mercury sphygmomanometry
- Progressive increase in cuff pulse pressure underestimation with increasing age
- "It is imperative that more personalized methods of BP measurement are developed"

Picone et al. Hypertension 2020; 75: 844-850.

Upright Change in Aortic BP

- 613 subjects without medications
 - 301 men
 - 312 women

 Divided to tertiles according to the supine-to-upright change in central SBP

Upright Change in Aortic BP

- 613 subjects without medications
 - 301 men
 - 312 women

 Divided to tertiles according to the supine-to-upright change in central SBP

Control of circulation

Cardiovascular response to upright posture

- 470 subjects
- Based on supine-toupright changes in systemic vascular resistance (SVR) and cardiac output (CO), clustering to three phenotypes.
- Why these variables: SVR and CO are the principal determinants of blood pressure.

Cardiovascular response to upright posture: clustering to three phenotypes

- 470 subjects
- Based on supine-toupright changes in systemic vascular resistance (SVR) and cardiac output (CO), clustering to three phenotypes.
- Why these variables: SVR and CO are the principal determinants of blood pressure.

Sustainer phenotype: highest cardiac sympathovagal balance

- "Sustainer" phenotype:
 - Lowest upright heart rate variability in HF power (lowest cardiac parasympathetic tone)
 - Increased supine and upright LF/HF ratio (sympathovagal balance)

Cardiovascular response to upright posture: associated with arterial stiffness

 In multivariate analysis, sustainer cluster, age, BMI and higher BP were explanatory factors for higher arterial stiffness

The arterial system is complex and blood flow is pulsatile

- A cohort of 92457 adults: mean resting heart rate is 65/min
- If 65/min is the mean heart rate for 24 hours, there are ~93600 systolic and diastolic blood pressure values within one day

Blood pressure in a 26-year-old woman

BP and heart rate in a 26-year-old woman

May Measurement Month 2018

- 1 504 963 individuals were screened in 89 countries
 - Mean age 45.3 years; 52.4% female
- Hypertension: SBP > 140 mmHg or DBP > 90 mmHg, or taking antihypertensive medication
- 33.4% of the individuals had hypertension
 - 59.5% were aware of their diagnosis
 - 55.3% were taking antihypertensive medication
- Hypertensive subjects
 - Of those on medication, 60.0% were controlled
 - Of all hypertensives, 33.2% were controlled

Hypertension is still a problem

- The methods to measure blood pressure are not optimal
- Low BP targets in CKD seem warranted and rational
 - Individual tailoring of treatment based on common sense is essential
 - BP measurement in the upright position provides relevant information
- CKD is associated with premature vascular ageing and hypertension is a major factor contributing to this process
 - Uncontrolled hypertension increases cardiovascular morbidity and mortality and accelerates progression to ESRD
- Intensive BP control reduces the risk for adverse cardiovascular outcomes and mortality in CKD
 - Adverse effects should be closely monitored and concurrent medical conditions taken carefully into account