Unattended eDNA sampling on a FerryBox

Pierre Jaccard, Elianne Egge, Anette Engesmo, Øyvind Tangen Ødegaard, Sonja Kistenich, Ann Kathrin Baur, Kai Sørensen, Andrew L. King

12th FerryBox Workshop, October 1-2 2024, Helsinki

NIL

What is an automated filtration system and why do we need it?

- Many important Essential Ocean Variables cannot yet be measured by sensors - technology development is needed to be able to collect bulk seawater and particulate (*mainly phytoplankton*) samples for shore-based analyses
- This was accomplished by starting with a FerryBox observing platform coupled to a modified Mclane PPS with reagent addition or freezing (automated filtration)
- Developed through national infrastructure NorSOOP project and H2020 NAUTILOS and JERICO-S3 projects

GOOS Essential Ocean Variables

Physics	Biochemistry	Biology and Ecosystems
Sea state Ocean surface stress Sea ice Sea surface height Sea surface temperature Subsurface temperature Suface currents Subsurface currents Sea surface salinity Subsurface salinity Ocean surface heat flux Ocean bottom pressure Turbulent diapycnal fluxes (*pilot)	Oxygen Nutrients Inorganic carbon Transient tracers Particulate matter Nitrous oxide Stable carbon isotopes Dissolved organic carbon	Phytoplankton biomass and diversity Zooplankton biomass and diversity Fish abundance and distribution Marine turtles, birds, mammals abundance and distribution Hard coral cover and composition Seagrass cover and composition Macroalgal canopy cover and composition Mangrove cover and composition Microbe biomass and diversity (*pilot) Invertebrate abundance and distribution (*pilot)

An automated sample filtration system can be used to collect any suspended material - any phytoplankton variable (POC, PON, POP, BSi, HPLC pigments), C/N isotopes, eDNA/eRNA, particulate metals, etc. Modifications of the offthe-shelf McIane PPS (other options available, but PPS is most versatile)

- Detached from mooring frame
- Battery holder & pressure bottle removed
- New bulkhead connector for comms + power
- Dometic CFX3 100 +20 to -20 °C cooler
 - Wi-fi/Bluetooth monitoring/control
 - Filter holder assembly to be compacted to fit
- Lab tests externally controlled through MATLAB

Pilot studies to test/validate the filtration system

- Modified Mclane PPS deployed on NIVA's MS Color Fantasy FerryBox
- Sampling campaigns carried out for eDNA sampling in December 2023 and April 2024 with ~20 samples/campaign (also PPS x IFCB sampling in June 2024 on Bergen-Kirkenes coastal route)
- Supporting environmental data from the FerryBox also available (S, T, chl, O₂, pCO₂, pH...) and conventional/manual filtration for eDNA as reference
- Eukaryotic phytoplankton DNA analysed at NIVA (metabarcoding [Illumina MiSeq v3] and qPCR)

FerryBox integration

- Control/monitoring by LabVIEW in Windows IPC over RS-232 serial
- Power supply: 230 VAC/18-36 VDC
- Sample triggering based on
 - Vessel position
 - · Data from other sensors
 - · Remote control
- Water from/to FB manifold
- Sampling steps:
 - Intake flush
 - Sampling
 - Fixation
 - Drying
 - (Cooling)
 - Filter retrieval

Environmental DNA - benchmarking & demonstration

Methods

- Sampling on two FerryBox cruises Oslo-Kiel (Dec. '23 and April '24)
- Filtration with benchtop setup done concurrently with PPS filtration (~1 L per sample, ~100 ml min⁻¹, <~10 mm Hg pressure)
- DNA preserved using EtOH (good recovery, low cost, practical) and stored at -20 C
- DNA isolated with commercial kit (Qiagen DNeasy PowerSoil)
- Metabarcoding with Illumina MiSeq v3

Endpoints

- Quantity of eDNA (NanoDrop absorbance)
- Taxonomic composition (metabarcoding)

December transects: red: 5Dec2023, yellow: 6Dec2023 April transects: red: 19Apr2024 yellow: 21Apr2024

Environmental DNA - benchmarking

eDNA quantity

- EtOH may dissolve cell membranes → will the DNA
 be flushed out of the PPS filter holder?
- April samples measured by NanoDrop after DNAextraction, adjusted for sample volume
- No significant difference between manual or PPS filtration or impact of EtOH flushing

Environmental DNA - demonstration

Metabarcoding (Illumina Miseq) - community composition of eukaryotes (aggregated at Division level)

- High proportion (~50-70%) of animal sequences (Metazoa); water not pre-filtered
- December 2023: higher proportion of centric diatoms (Gyrista) reads in southern region
- April: low proportion of diatoms, difference in proportion of dinoflagellates+ciliates vs. metazoa (zooplankton) across the salinity/current boundary

Environmental DNA - demonstration

Metabarcoding - taxonomic composition PCA

Technical challenges/lessons learned

- Careful priming necessary to avoid air in flow path
- Sensitive to intake/outlet pressure
 - Negative ΔP: Air sucked in
 - Positive ΔP: Water leaks
- Switch to piston/overflow at intake
 - Reduces leaks, improves resolution
- Particles unevenly distributed on filters
- TSM challenging, filter rims damaged
- Logistics: Priming and filter retrieval relatively time consuming in FerryBox operational context
- Neutral port filter routine replacement

Concluding remarks

- Automated particulate matter filtration developed, integrated, and tested with a FerryBox platform (modifying/adapting PPS for filtering and preserving samples)
- Field demonstrations in December 2023 and April 2024 for collection of eDNA; will be compared to microscopy samples; June 2024 PPS x IFCB sampling being analysed
- PPS eDNA sampling show spatial and seasonal differences in metabarcoding-based taxonomic composition, similar to benchtop filtration
- Future use for collecting and preserving filters for other EOVs (chl a, particulate organic C/N/P, pigments, phyto/microbe biomass, etc.)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nos. 871153 (JERICO-S3) and 101000825 (NAUTILOS), as well as the Research Council of Norway Research Infrastructure program grant no. 269922 (NorSOOP)