Suomen ympäristökeskus Finlands miljöcentral Finnish Environment Institute syke.fi | ymparisto.fi

Dana.Hellemann@syke.fi @DanaHellemann Ecosystem Functions Marine- & Freshwater Solutions

Benthic nitrous oxide cycling in a changing coastal sea

Dana Hellemann

2022-2025; incld. Hermann Bange (GEOMAR), Robinson Fulweiler (BU), Kirsten S. Jørgensen (SYKE), Aleksandra Lewandowska (HU), Mikko Kiljunen (JYU), Bärbel Mueller-Karulis (SU), Kristian Spilling (SYKE), Xiaole Sun (CAS)

Motivation

Nitrous oxide (N_20) is a powerful greenhouse gas, that, beyond its anthropogenic sources, is naturally produced (and partly consumed) by the microbial processes nitrification (I; by-product), nitrifier denitrification (II; end-product), and denitrification (III; intermediate).

Coastal sediments, being rich in organic matter and nutrients, contribute considerably to marine N_2O cycling, but the significance of each microbial process is uncertain due to methodological constrains.

This prevents assessing present and future coastal N_2O dynamics, as the microbial processes involved are assumed to respond differently to changes in environmental conditions based on their specific metabolism.

Aim and Approach

Disentangling the different microbial processes adding to net benthic N₂O production (i) under present and future eutrophication status and water temperature (ii) over seasonal changes in environmental conditions

to gain better mechanistic knowledge and (iii) improve predictions for future net N_2O production in coastal sediments of the northern Baltic Sea.

<u>Micro-sensors + microbial functional gene expressions (adapted from Meyer et al. 2008)</u>

- (A) N_2O peak in oxic sediment layer: aerobic NH_4 -oxidation (Σ nitrifi. + nitrifier deni.) Functional genes: *amoA* (nitrification), *nirK* (nitrifier denitrification)
- **(B)** N₂O peak in anoxic sediment layer: anaerobic NO₃-reduction (denitrification) Functional genes: *cnorB* (deni.: N₂O production), *nosZ I* (deni.: N₂O consumption)

Implementation

Benthic mesocosm experiment (aim i)

Sediment boxes from Tvärminne archipelago, northern Gulf of Finland, treated for 10d (n=6) and 20d (n=6) with temperature (*in situ*, +2°C, +4°C; *HELCOM & Baltic Earth 2021*) and organic matter (*in situ*, +algae).

<u>Seasonal fieldwork (aim ii)</u>

Sediment sampling in the Tvärminne archipelago (same site and parameters as experiment) every 5 weeks over 1 year. Additionally: N_2O sediment-water fluxes and N_2O water column concentrations.

Modelling (aim iii)

Microbial reactive transport model fed with all obtained project data.

Parameters taken to better understand benthic N₂O dynamics

Microprofiles (N_2O , O_2 , pH, H_2S), sediment DNA+RNA, porewater constituents (NH_4^+ , NO_3^- , DOC, DOM), sediment Chl a, POC/N, TOC, and porosity, bottom water nutrients and oxygen. Only experiment: N_2O production in denitrification measured with IPT (method comparison).

Acknowledgement This project is funded by the Academy of Finland, grant agreement 348654, and uses marine infrastructure from FINMARI & technical support from Tvärminne Zoological Station.