



# Ferrybox data from ship to your Desktop

DROUINEAU Ludovic Ifremer - SISMER Coriolis database manager Copernicus Marine In Situ TAC Global Product leader & Service Manager GOSUD - IODE Program Leader



### IOC. (2003). Resolution XXII-6: IOC Oceanographic Data Exchange Policy. Intergovernmental Oceanographic Commission, UNESCO

The timely, free and unrestricted international exchange of oceanographic data is essential for the efficient acquisition, integration and use of ocean observations gathered by the countries of the world for a wide variety of purposes including the prediction of weather and climate, the operational forecasting of the marine environment, the preservation of life, the mitigation of human-induced changes in the marine and coastal environment, as well as for the advancement of scientific understanding that makes this possible

https://unesdoc.unesco.org/ark:/48223/pf0000372654



## **Topics to be Covered**

- In Situ TAC Organisation and Ferrybox dataflow
- Some examples
- Marine Data Store & use of copernicusmarine toolbox
- Some features that will come soon
- Acquisition in EEZ



# In Situ TAC Organisation

Copernicus Marine Service In Situ TAC portfolio

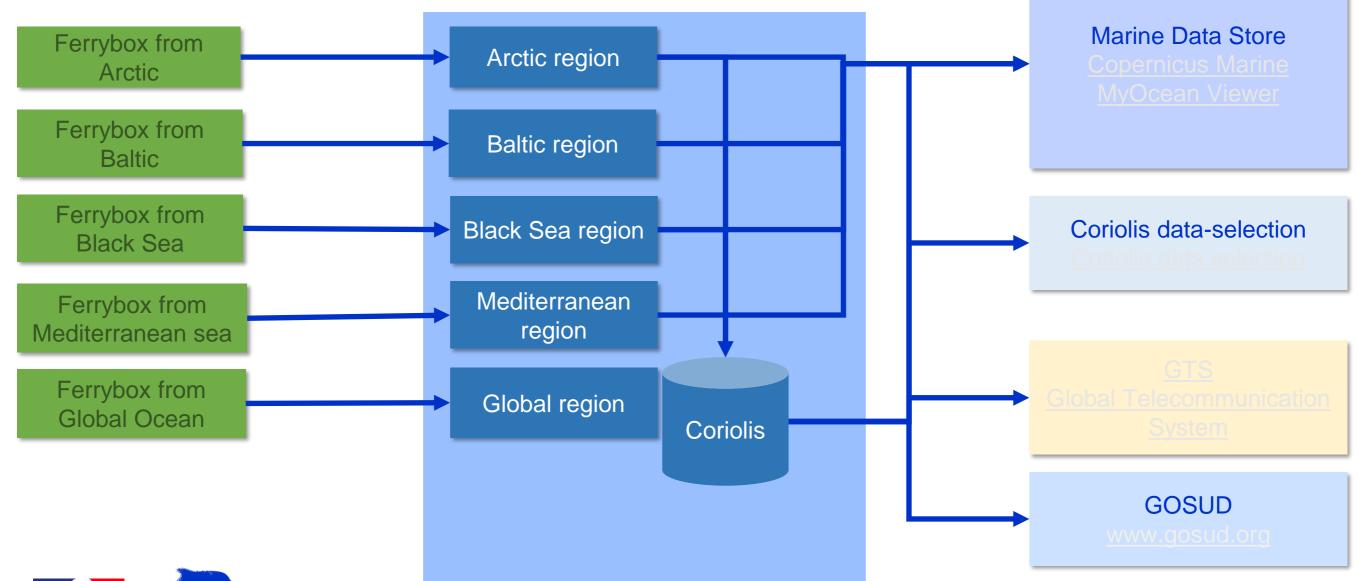
### NRT products

Global: Ifremer-Pokapok Arctic Ocean: IMR Baltic Sea: SMHI North West Shelf: BSH Iberia-Biscay-Ireland: PdE-Nologin Mediterranean Sea: HCMR Black Sea: IOBAS T & S: OceanScope Currents (UV): CLS-AZTI-Ifremer-CNR

### **Multi Year products**

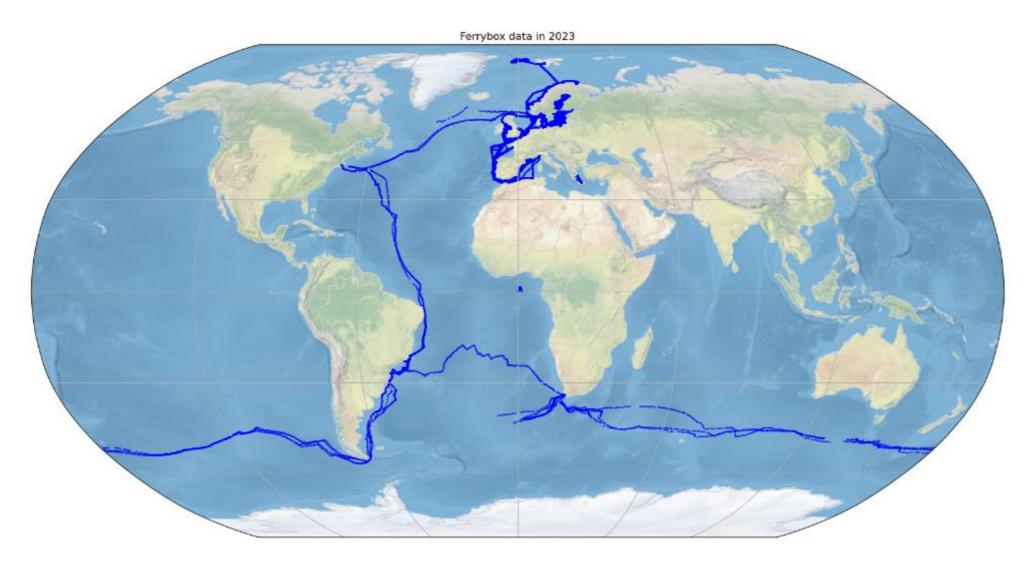
T & S: OceanScope Currents (UV): CLS-AZTI-Ifremer-CNR-SOCIB Waves: PdE-Nologin BGC: IMR-Pokapok-HCMR-SYKE Sea level: PdE-Nologin Carbon: IMR OMI: PdE-Nologin






### In Situ TAC Organisation - Global Product INSITU\_GLO\_PHYBGCWAV\_DISCRETE\_MYNRT\_013\_030

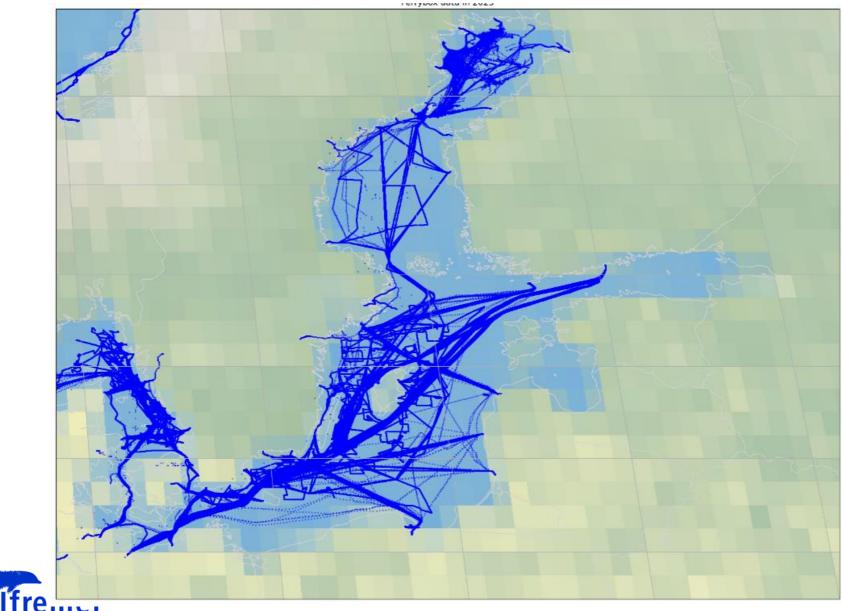
- The global region : all the world's oceans and seas.
  - It is hourly synchronised with regional products (Arctic, Baltic, Black Sea, North West Shelf, Mediterranee, Iberian-Biscay-Ireland)
- The data from other regions feeds Coriolis database (the French In situ database for operational oceanography)
- Data are made accessible through Coriolis data selection
- Data sent to Marine Data Store are accessible <u>Global Ocean- In-Situ</u> <u>Near-Real-Time Observations | Copernicus Marine Service</u>




# Ferrybox dataflow in real-time






### Ferrybox data in Coriolis in 2023

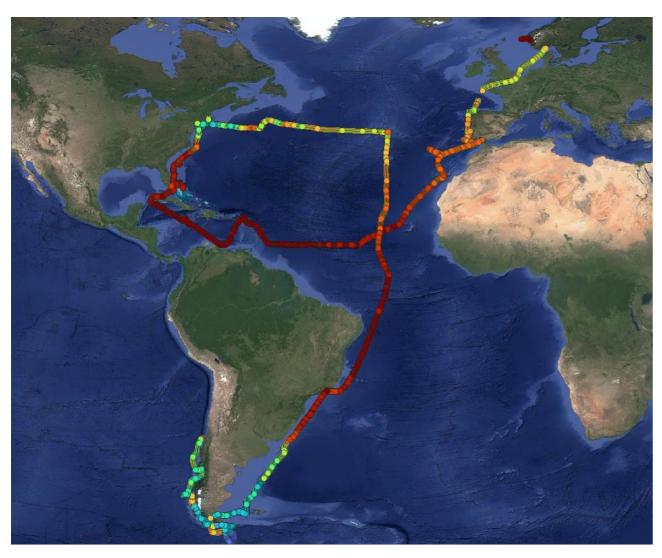


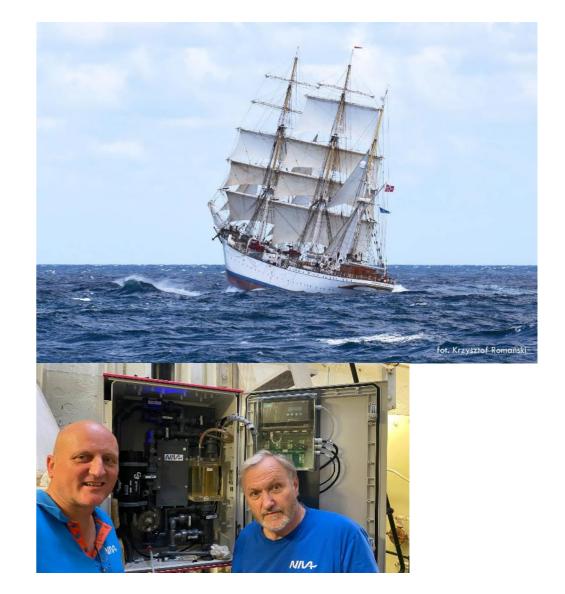






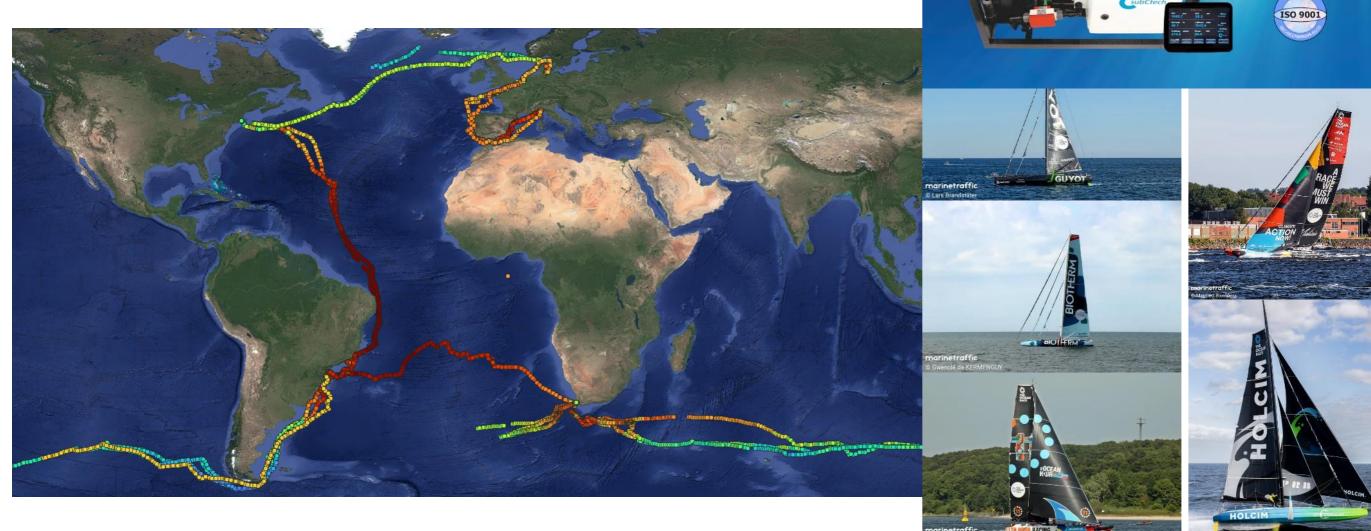






## **Topics to be Covered**

- In Situ TAC Organisation and Ferrybox dataflow
- Some examples
- Marine Data Store & use of copernicusmarine toolbox
- Some features that will come soon
- Acquisition in EEZ




### Statsraad lehmkuhl 2021-2022



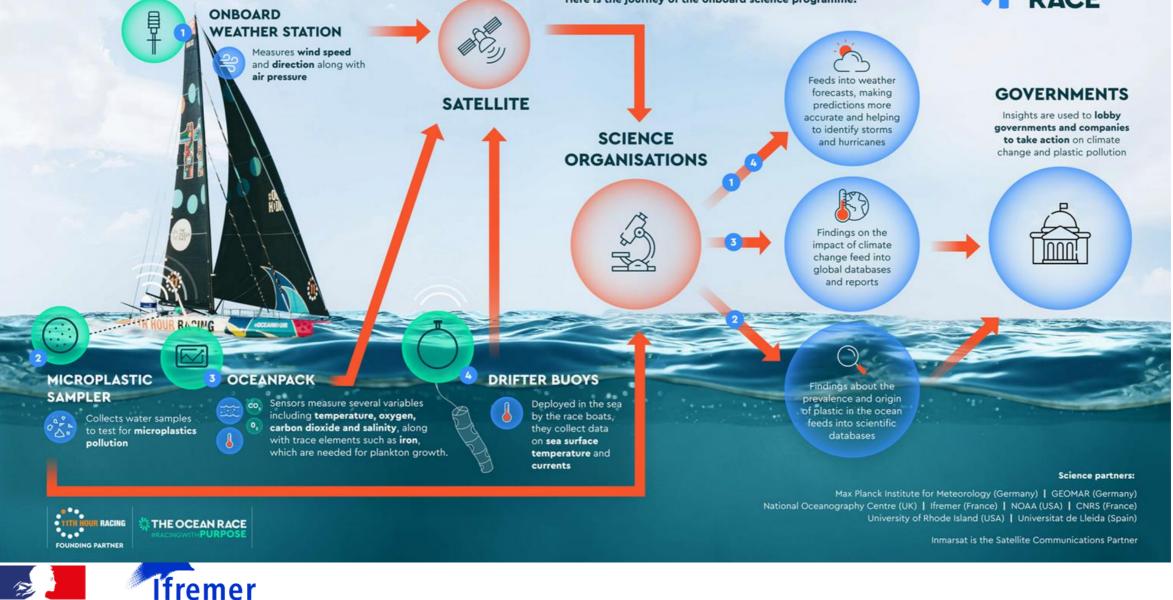




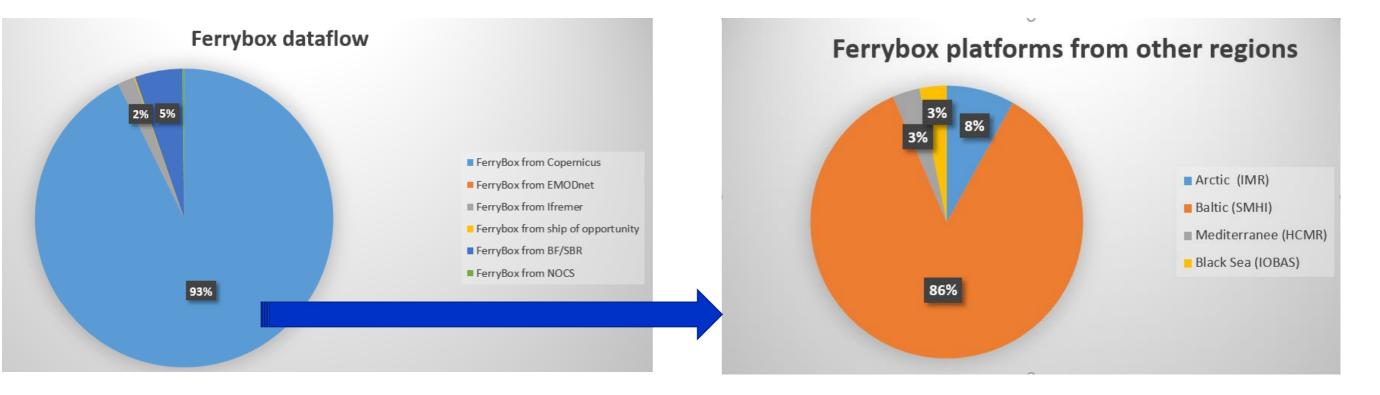
### **The Ocean Race**





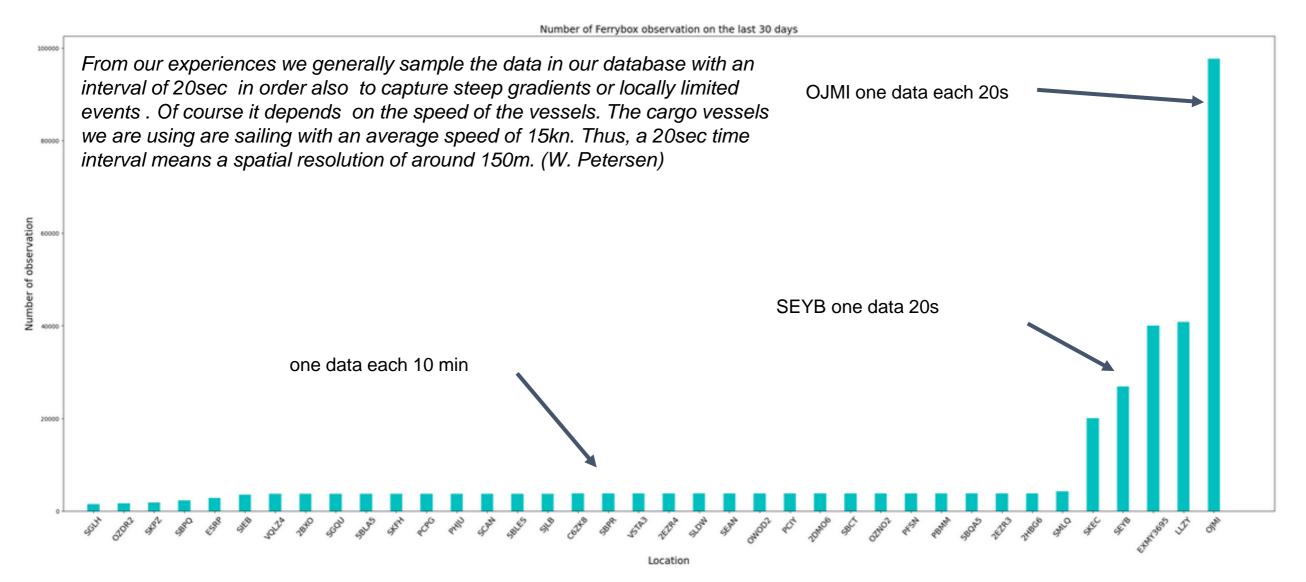

A DEST

LI-CO


### **A RACE TO SAVE THE OCEAN**

Using cutting edge equipment and technology, teams in The Ocean Race collect more data about the environment than any other sporting event in the world. The insights gleaned feed into reports that inform and influence decisions by governments across the world. Here is the journey of the onboard science programme.



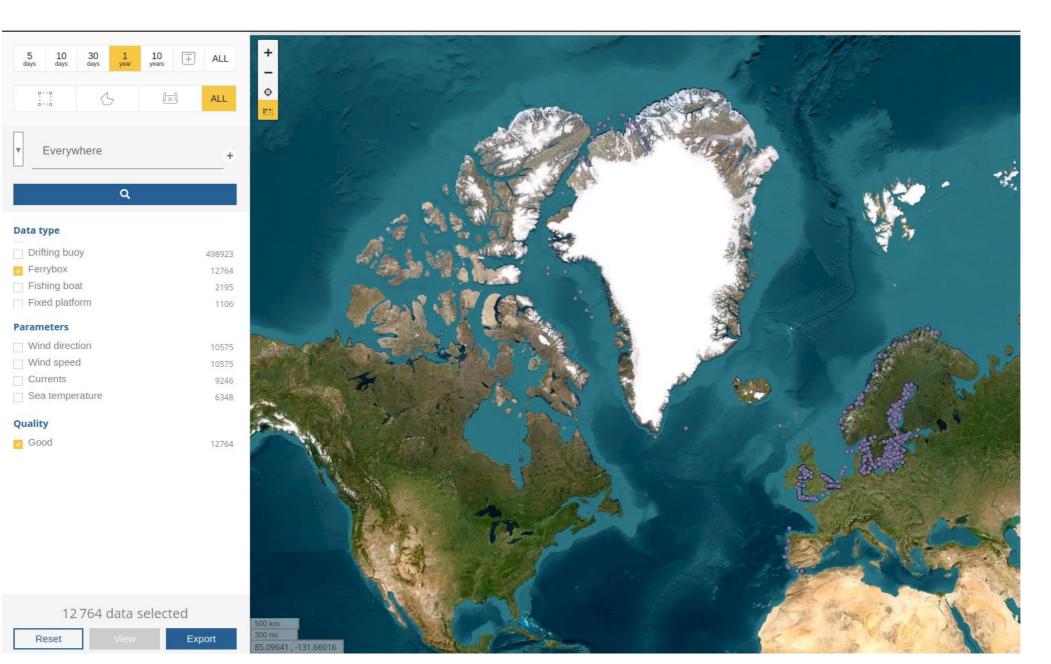



### Ferrybox data since ever





### Ferrybox observations over the last 30 days






### **Parameters from Ferryboxes**

|                 | Parameters from Ferryboxes in           | real time   |      |          |      |      |
|-----------------|-----------------------------------------|-------------|------|----------|------|------|
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         |             |      |          |      |      |
|                 |                                         | HCDT,HCSP   |      |          |      |      |
|                 |                                         |             |      |          |      | TUR4 |
|                 |                                         |             |      |          | DOX1 |      |
|                 |                                         |             |      |          |      | РНҮС |
| WSPD,WDIR       | TEMP                                    | ATMP        | FLU2 | PSAL     | CDOM |      |
| ■ TEMP ■ ATMP ■ | FLU2 = WSPD,WDIR = HCDT,HCSP = PSAL = [ | DOXY DOX1 C |      | 4 ■ PHYC |      |      |

### Ferrybox data in data selection





## GTS data: Example with FinMaid (OJMI)

### Extraction date: 2024-09-26 17:30:00

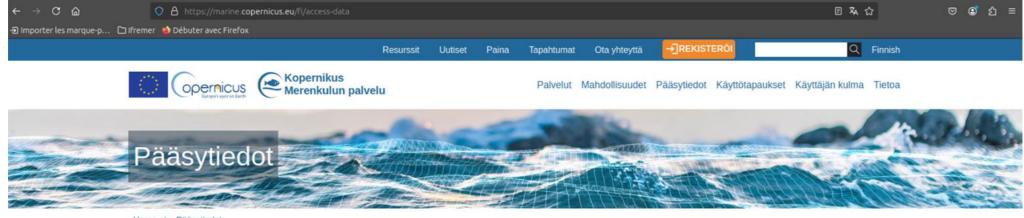
### last date of observation in OSMC ERDDAP: 2024-09-25T04:06:00

| platform_id   | platform_code | platform_type   | country | time                 | latitude      | longitude    | observation_depth | sst   | atmp  | precip | SSS | ztmp  | zsal | slp | windspd | winddir  |
|---------------|---------------|-----------------|---------|----------------------|---------------|--------------|-------------------|-------|-------|--------|-----|-------|------|-----|---------|----------|
|               |               |                 |         | UTC                  | degrees_north | degrees_east |                   | Deg C | Deg C | mm     | 1   | Deg C |      | hPa | m/s     | Deg true |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:00:00Z | 59.02         | 21.46        | 0.0               |       |       |        |     | 17.5  | 6.63 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:01:00Z | 59.03         | 21.46        | 0.0               |       |       |        |     | 17.5  | 6.62 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:02:00Z | 59.03         | 21.47        | 0.0               |       |       |        |     | 17.5  | 6.62 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:03:00Z | 59.03         | 21.47        | 0.0               |       |       |        |     | 17.4  | 6.62 |     |         |          |
| 6.635693855E9 | ОЈМІ          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:04:00Z | 59.03         | 21.48        | 0.0               |       |       |        |     | 17.4  | 6.62 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:05:00Z | 59.04         | 21.48        | 0.0               |       |       |        |     | 17.3  | 6.64 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:06:00Z | 59.04         | 21.48        | 0.0               |       |       |        |     | 17.3  | 6.63 |     |         |          |
| 6.635693855E9 | ОЈМІ          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:07:00Z | 59.04         | 21.49        | 0.0               |       |       |        |     | 17.3  | 6.64 |     |         |          |
| 6.635693855E9 | ОЈМІ          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:08:00Z | 59.05         | 21.49        | 0.0               |       |       |        |     | 17.3  | 6.64 |     |         |          |
| 6.635693855E9 | ОЈМІ          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:09:00Z | 59.05         | 21.5         | 0.0               |       |       |        |     | 17.2  | 6.64 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:10:00Z | 59.05         | 21.5         | 0.0               |       |       |        |     | 17.2  | 6.64 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:11:00Z | 59.05         | 21.51        | 0.0               |       |       |        |     | 17.1  | 6.64 |     |         |          |
| 6.635693855E9 | OJMI          | SHIPS (GENERIC) | UNKNOWN | 2024-09-25T00:12:00Z | 59.05         | 21.51        | 0.0               |       |       |        |     | 17.1  | 6.64 |     |         |          |

## **GTS: Some topics to follow**

There is no metadata in OceanOPS regarding Ferrybox OceanOPS need to create a program group (related to SOOP ?) Discussion should be tackle at Bologna (SOOP-DATAMEQ)

The use of SOTID should be generalised instead of the CALLSIGN. A SOTID is related to an instrument contrary to the call-sign




## **Topics to be Covered**

- In Situ TAC Organisation and Ferrybox dataflow
- Some examples
- Marine Data Store & use of copernicusmarine toolbox
- Some features that will come soon
- Acquisition in EEZ



### **Copernicus Marine In Situ TAC**



Home > Pääsytiedot

Tutustu teratavuihin valtameridataa kaikilla eri käyttäjätasoilla.

| TIEDOT                                                                                                                                                            | SUUNTAUKSET                                                                                                                            | ASIANTUNTEMUS                                                                                                                                                  | SEURAA                                                                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| OCEAN TUOTTEET<br>Ocean-tuoteluettelo, josta voi ladata tai<br>visualisoida tietoja lähes 15 muuttujasta,<br>mukaan lukien hindcast-, virta- ja<br>ennustetiedot. | OCEAN ILMASTOTRENDIT<br>Meren terveyden seuranta.<br>Valtamerten seurantaindikaattorit<br>Ocean Climate Portal                         | OCEAN VALTION RAPORTTI<br>Laaja vuosittainen analyysi valtameren<br>tilasta lähes 20 vuoden ajalta ja vakavista/<br>huomattavista vuosittaisista tapahtumista. | OCEAN IN SITU<br>Seuraa meressä käytettävää in situ -<br>teknologiaa In Situ TAC Dashboard -<br>taulukon avulla.                |  |  |  |
| EXPLORATION                                                                                                                                                       | LAATU                                                                                                                                  | POLITIIKKA                                                                                                                                                     | INFOGRAPHICS                                                                                                                    |  |  |  |
| OCEAN VISUALISOINTI<br>Sukella 4D-digitaalisiin valtameriin 3<br>visualisointityökalun avulla aloittelijoille,<br>keskitasoisille ja edistyneille käyttäjille.    | TUOTTEEN LAATU DASHBOARD<br>Tutustu kuukausittaisiin päivityksiin<br>tieteellisen suorituskyvyn ja tuotteiden<br>laatutietojen osalta. | OCEAN-TUOTTEET MSFD:LLE<br>Yhdessä EMODnetin kanssa tarjoamme<br>meristrategian puitedirektiivin (MSFD)<br>kannalta olennaisia tietoja.                        | DATA IN A NUTSHELL<br>Dive into our data offer for the Blue<br>(physical), White (sea ice), and Green<br>(biogeochemical) ocean |  |  |  |



### **Access to In Situ TAC products**

| → C @                      | O A https://data.marine.copern | icus.eu/products     | 茶 合      | ල ම් දු ≡ |
|----------------------------|--------------------------------|----------------------|----------|-----------|
| nporter les marque-p 🗅 Ifi | emer 🛛 👜 Débuter avec Firefox  |                      |          |           |
|                            | Copernic                       | us Marine Data Store | <b>~</b> |           |
|                            | Home 🗲 Marine Data Stor        | e                    |          |           |
|                            | Filters                        | Products 284*        |          |           |

### Filters

FREE-TEXT SEARCH

FAVOURITES 🚖

TIME RANGE .

jj/mm/aaaa 🗂 jj/mm/aaaa 🗂 Covering full interval

WITH DEPTH 36

DEPTH RANGE .

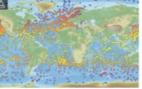
UNIVERSE . Blue Ocean 199 White Ocean 40 Green Ocean 78


MAIN VARIABLES . Carbonate system 18 Mixed layer thickness 16 Nekton 1 Nutrients Optics 41 Organic carbon Oxygen 24

Plankton 7 Salinity 37 Seaice 38 Sea surface height 51 Surface density Temperature 9

Velocity 53 Wave 35 Wind

Global Oceano 101


AREA +

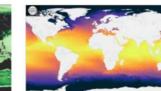


**Global Ocean Physics Analysis** and Forecast

Models Global, 0.083° × 0.083° × 50 levels 1 Jan 2019 to 6 Oct 2024, hourly, daily,... Temperature, salinity, sea surface height, velocity, mixed layer thickness, wave, sea ice...

### RECENTLY VIEWED




Global Ocean- In-Situ Near-Real-**Time Observations** 

In-situ Global



**Global Ocean Biogeochemistry** Analysis and Forecast

Models Global, 0.25° × 0.25° × 50 levels 1 Oct 2021 to 4 Oct 2024, daily, monthly Plankton, nutrients, oxygen, carbonate



Models



Global O

and Fore

Models

Global, 0.08

Velocity, w:

**Global Ocean Physics Reanalysis** 

Global, 0.083° × 0.083° × 50 levels 1 Jan 1993 to 25 Jun 2024, daily, monthly Temperature, salinity, sea surface height, velocity, mixed layer thickness, sea ice



**Global Ocean Biogeochemistry** Analysis and Forecast

Models Global. 0.25° × 0.25° × 50 levels





### **Access to the Marine Data Store**

### A https://data.marine.copernicus.eu/product/INSITU GLO PHYBGCWAV DISCRETE MYNRT 013 030/description

### 🍪 Débuter avec Firefox

### Home > Marine Data Store > Product

| i Description                   | Overview                                                                                                                     |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| A Notifications                 | Global Ocean - near real-time (NRT) in situ quality controlled                                                               |
| 🛓 Data access                   | observations, hourly updated and distributed by INSTAC within<br>24-48 hours from acquisition in average. Data are collected |
| 🖂 Contact                       | mainly through global networks (Argo, OceanSites, GOSUD,<br>EGO) and through the GTS                                         |
| DOCUMENTATION                   | DOI (product):                                                                                                               |
| User Manual                     | https://doi.org/10.48670/moi-00036                                                                                           |
| Quality Information<br>Document |                                                                                                                              |
| Synthesis Quality<br>Overview   |                                                                                                                              |
| Licence                         |                                                                                                                              |
| How to cite                     |                                                                                                                              |
| DOI                             |                                                                                                                              |
| 10.48670/moi-00036              |                                                                                                                              |

### Sea water temperature ~ $18/09/2024 \ 00:00 \pm 6 h + 0 m \pm 25 m$ 20°C -20 CTD Profiler • Un Drifter Sea mammal Ferrybox Tide gauge Glider Thermosalinometer Mooring XBT \$ \$

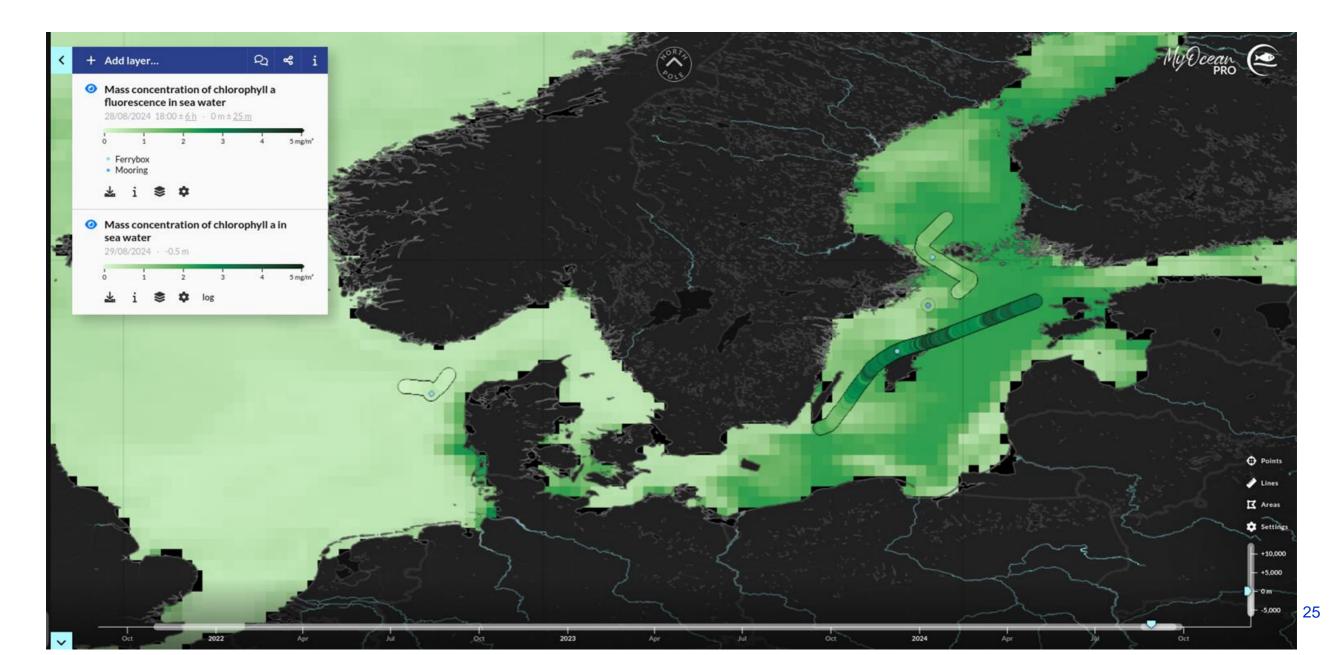
本公



Explore in MyOcean Pro



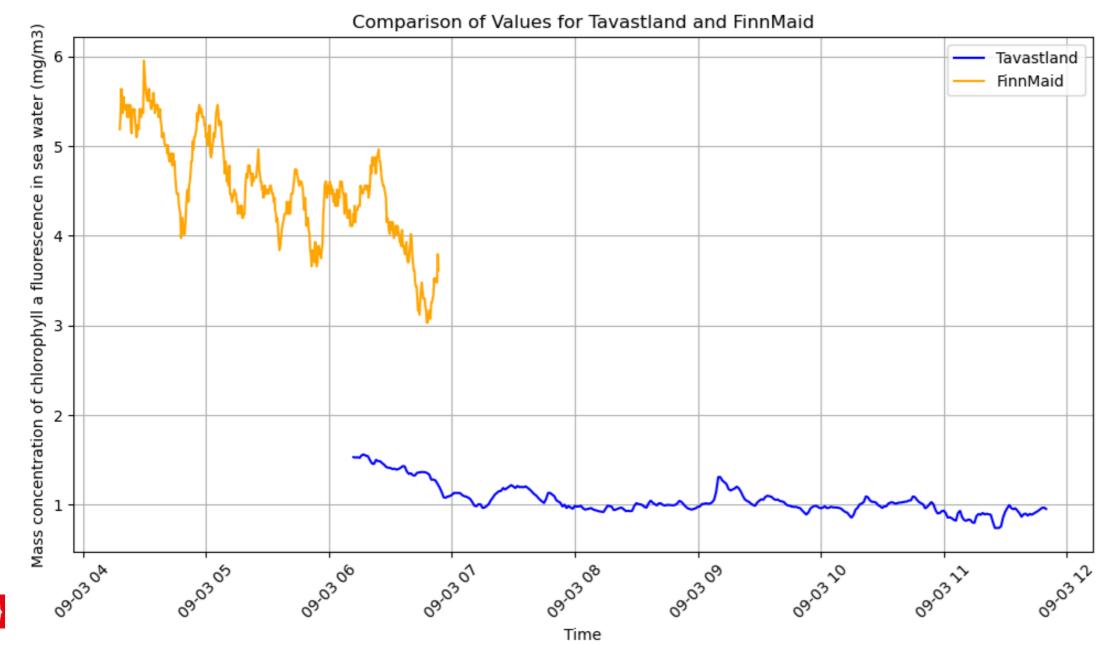
### **Browse Ferrybox files**


### Home > Marine Data Store > Product > File brow

### 🔺 / INSITU\_GLO\_PHYBGCWAV\_DISCRETE\_MYNRT\_013\_030 / cmems\_obs-ins\_glo\_phybgcwav\_mynrt\_na\_irr / history / FB

| Select all Clear all           |           | Download   |
|--------------------------------|-----------|------------|
| AR_TS_FB_5855.nc               | 13.53 MB  | 03/09/2024 |
| AR_TS_FB_LAOU7.nc              | 2.91 MB   | 07/07/2024 |
| AR_TS_FB_LLVT.nc               | 12.81 MB  | 07/07/2024 |
| AR_TS_FB_LMSD.nc               | 28.43 MB  | 07/07/2024 |
| AR_TS_FB_Statsraad-Lehmkuhl.nc | 1.56 MB   | 07/07/2024 |
| BO_TS_FB_Ale_2019.nc           | 618.25 kB | 18/06/2024 |
| BO_TS_FB_Ale_2020.nc           | 325.54 kB | 18/06/2024 |
| BO_TS_FB_Ale_2021.nc           | 583.81 kB | 18/06/2024 |
| BO_TS_FB_Ale_2022.nc           | 630.19 kB | 18/06/2024 |
| BO_TS_FB_Ale_2023.nc           | 823.54 kB | 18/06/2024 |
| BO_TS_FB_Ale_2024.nc           | 654.91 kB | 20/09/2024 |
| BO_TS_FB_Atle_2019.nc          | 291.56 kB | 18/06/2024 |
| BO_TS_FB_Atle_2020.nc          | 216.92 kB | 18/06/2024 |
| BO_TS_FB_Atle_2021.nc          | 735.04 kB | 18/06/2024 |
| BO_TS_FB_Atle_2022.nc          | 664.65 kB | 18/06/2024 |
| BO_TS_FB_Atle_2023.nc          | 893 kB    | 18/06/2024 |
| BO_TS_FB_Atle_2024.nc          | 727.34 kB | 20/09/2024 |
| BO_TS_FB_BalticQueen_2015.nc   | 786.87 kB | 18/06/2024 |
| BO_TS_FB_BalticQueen_2017.nc   | 266.83 kB | 18/06/2024 |
| BO_TS_FB_BalticQueen_2018.nc   | 219.24 kB | 18/06/2024 |




### View data in the MyOcean Viewer



### **Download and compare data**



### **Download and compare data**







## **Download data using copernicus toolbox**

| copernicusmarine getrequest-file                          | e request-ferrybox.json     |
|-----------------------------------------------------------|-----------------------------|
| {                                                         |                             |
| "dataset_id": "cmems_obs-ins_glo_phybgcwav_mynrt_na_irr", | Request only Ferrybox files |
| "dataset_version": null,                                  |                             |
| "dataset_part": "latest",                                 |                             |
| "no_directories": false,                                  |                             |
| "filter": "*TS_FB_*",                                     |                             |
| "regex": null,                                            |                             |
| "output_directory": "copernicusmarine_data",              |                             |
| "show_outputnames": true,                                 |                             |
| "service": "files",                                       |                             |
| "force_download": false,                                  |                             |
| "file_list": null,                                        |                             |
| "sync": false,                                            |                             |
| "sync_delete": false,                                     |                             |
| "index_parts": false,                                     |                             |
| "disable_progress_bar": false,                            |                             |
| "overwrite_output_data": false,                           |                             |
| "overwrite_metadata_cache": false,                        |                             |
| "no_metadata_cache": false,                               |                             |
| "log_level": "INFO"                                       |                             |





## **Download data using copernicus toolbox**

### copernicusmarine get --request-file request-ferrybox.json

"dataset id": "cmems obs-ins glo phybgcwav\_mynrt\_na\_irr", "dataset version": null, "dataset part": "history", "regex": null, "output directory": "copernicusmarine data", "show outputnames": true, "service": "files", "file list": null, "sync": false, "sync delete": false, "index parts": false, "disable progress bar": false, "overwrite output data": false, "overwrite metadata cache": false, "no metadata cache": false, "log level": "INFO"



Request all Ferrybox files for FinnMaid ferry



### **Plot Sea Water Temperature**

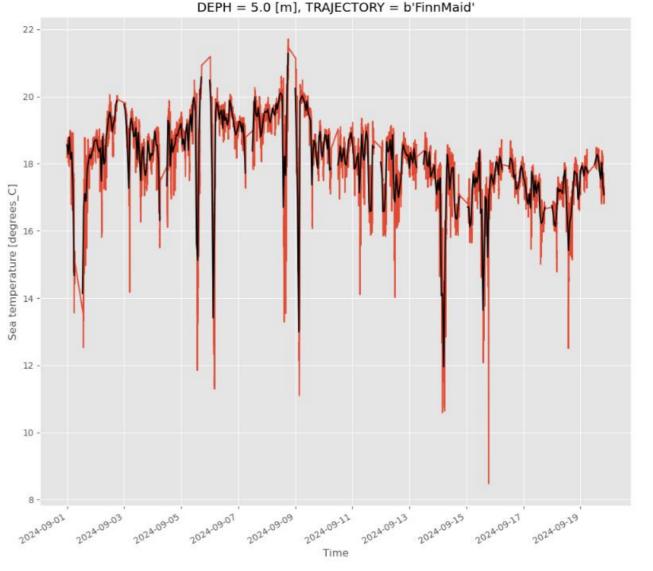
import xarray as xr
import matplotlib.pyplot as plt

plt.style.use('ggplot')
plt.close()
# Create a figure and axis
plt.figure(figsize=(12, 10))

# Path to the NetCDF files
file\_pattern = '/home/ldrouine/Data/Ferrybox/B0\_TS\_FB\_FinnMaid\_\*.nc'

# Open multiple NetCDF files as a single dataset
ds = xr.open\_mfdataset(file\_pattern, combine='by\_coords', chunks=None)

temp = ds['TEMP']


temp\_filtered = temp.sel(TIME=slice('2024-09-01', '2024-09-22'))

# Plot TEMP over TIME
#temp.plot()
temp\_filtered.plot()
# Calculate and plot the mean temperature over the time range
# Resample the data by hour and compute the mean for each hour
temp hourly mean = temp filtered.resample(TIME='1H').mean()

temp\_hourly\_std = temp\_filtered.resample(TIME='1H').std()

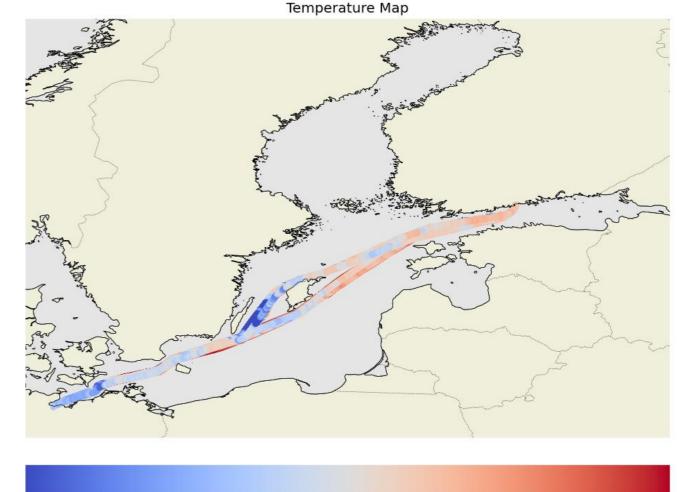
# Plot the hourly mean temperature

# Show the plot
plt.show()



### **Plot Sea Water Temperature value on a map**

import cartopy.crs as ccrs
import cartopy.feature as cfeature


# Select the temperature variable (TEMP) and the coordinates temp = ds['TEMP'] lat = ds['LATITUDE'] lon = ds['LONGITUDE']

# Filter data between 2024-09-01 and 2024-09-22
start\_date = '2024-09-01'
end\_date = '2024-09-22'
temp\_filtered = temp.sel(TIME=slice(start\_date, end\_date))
lat\_filtered = lat.sel(TIME=slice(start\_date, end\_date))
lon filtered = lon.sel(TIME=slice(start\_date, end\_date))

# Add coastlines and other map features
ax.coastlines()
ax.add\_feature(cfeature.BORDERS, linestyle=':')
ax.add\_feature(cfeature.LAND, edgecolor='black')
ax.set\_extent([10, 30, 53, 66], crs=ccrs.PlateCarree())

# Add a colorbar
cbar = plt.colorbar(sc, ax=ax, orientation='horizontal', pad=0.05)
cbar.set label('Temperature (C)')

# Show plot
plt.title('Mean Temperature Map')
plt.show()



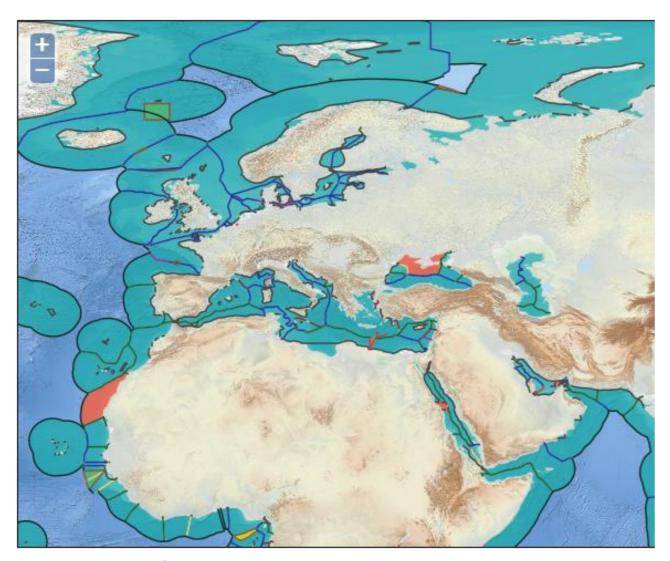
## **Topics to be Covered**

- In Situ TAC Organisation and Ferrybox dataflow
- Some examples
- Marine Data Store & use of copernicusmarine toolbox
- Some features that will come soon
- Acquisition in EEZ



# What is coming next ?

- Subsetting in time and geographic area
- part history (which contains the full time series)
- Possibility to select by platform type, geographical area, provider,...




## **Topics to be Covered**

- In Situ TAC Organisation and Ferrybox dataflow
- Some examples
- Marine Data Store & use of copernicusmarine toolbox
- Some features that will come soon
- Acquisition in EEZ



# **Acquisition in EEZ**



French research vessels decide to stop acquisition of underway data during transits in EEZ



## **Extra slide: Issue with acquisition in EEZ**

The topic of taking observations in EEZs is being discussed under the Working Group on ocean observations in national juridiction under the IOC – which will make a report to Assembly next year (2025)

EC57 Progress

https://oceanexpert.org/document/30476

https://oceanexpert.org/downloadFile/56422

