Microplastics

(almost) everywhere but still difficult to sample?

12th FerryBox workshop 1-2 October 2024 Finnish Meteorological Institute, Helsinki

Maik Grunwald, -4H-JENA engineering, grunwald@4h-jena.de Gunnar Gerdts, Alfred-Wegener-Institut, gunnar.gerdts@awi.de

What is microplastic?

What is microplastic?

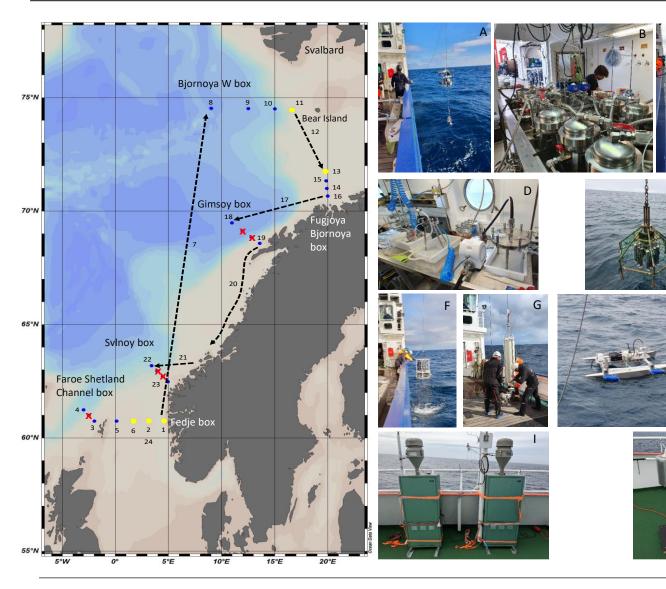
Common size divisions	Field descriptor
> 1 m	mega
25 – 1000 mm	macro
5 – 25 mm	meso
< 5 mm	micro
< 1 µm	nano

Source: GESAMP (2019) Guidelines for the monitoring and assessment of plastic litter and microplastics in the ocean (eds Kershaw P.J., Turra A. and Galgani F.), London, UK, GESAMP Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, 130pp. (GESAMP Reports and Studies, No. 99). DOI: http://dx.doi.org/10.25607/OBP-435

Manual and semi-automatic devices

by Gunnar Gerdts and team

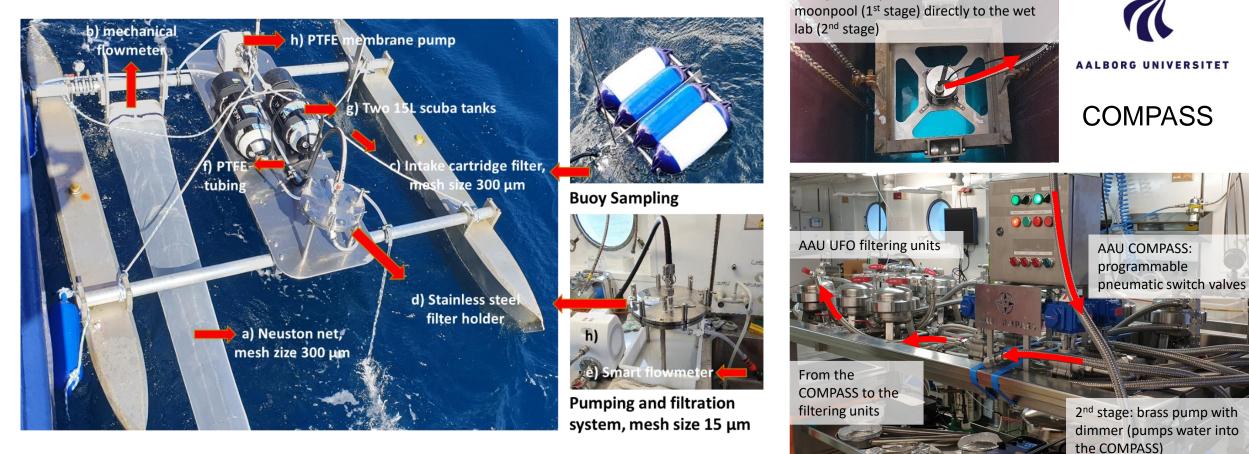
JPI-O FACTS cruise in June/July 2021 (Fluxes and Fate of Microplastics in Northern European Waters)


https://jpi-oceans-facts.eu/

Manual and semi-automatic sampling:

 Manual: outside the ship on a Catamaran or buoy
 Semi-automatic: inside the ship using COMPASS (COntinuous Microplastic Automatic Sampling System)

Field work -- lessons from JPI-O FACTS (June/July 2021)


Comprehensive sampling campaign

- Manual: Catamaran or buoy at all stations; up to 40 m³ filtered at 300 µm, up to 650 L filtered at 10 µm
- Semi-automated: COMPASS at all stations and during "steaming", 300 μm & 10 μm (combined), > 500 L

Field work -- lessons from JPI-O FACTS (a closer look)

Catamaran & buoy

1st stage: submersible pump: the water is transported by a metal hose from the

<u>CATAMARAN</u> → Only "snapshot sampling" (time/space) ← <u>COMPASS</u>

Advantages

- Basic unit (with nets) commercially available
- Adapted unit allows sampling by net and pump/filter-system in parallel
- all subunits of filter/pump-system out of PTFE or stainless steel (contamination reduction)
- 300 µm basket filter (intake) prevents clogging of 10 µm filter

Disadvantages

- Discrete sampling (on sampling station)
- Relatively large device
- "tricky" operation during heavy weather
- Operation only on research vessels

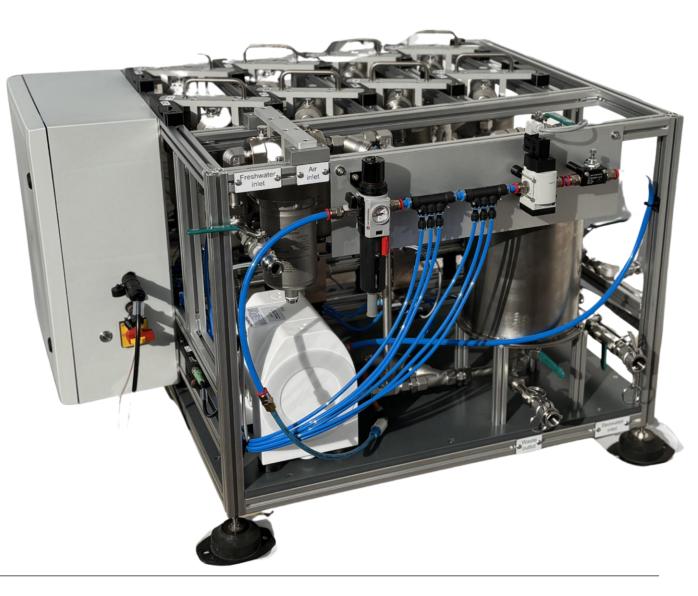
Advantages

- Permanent sampling
- all subunits of filter/pump-system out of PTFE or stainless steel (contamination reduction)
- Modular (more sub-units possible)

Disadvantages

- Relatively large device
- Complicated and time consuming assembly/installation
- Manual change of filter meshes (possible contamination)
- Operation only on research vessels

Needed


- MP sampling system for **operation on "ships of opportunity"** (avoiding snapshots)
- Simple assembly/installation (opportunistic usage of seawater intake (deckwash), compressed air and electricity)
- Small footprint
- Automated operation (programmable time, position, volume etc.)
- Low maintenance (avoid clogging and cross contamination)
- Contamination reduction (safe replacement of complete filter units [cartridge filters])

Transferring the experience into an automated and autonomous system

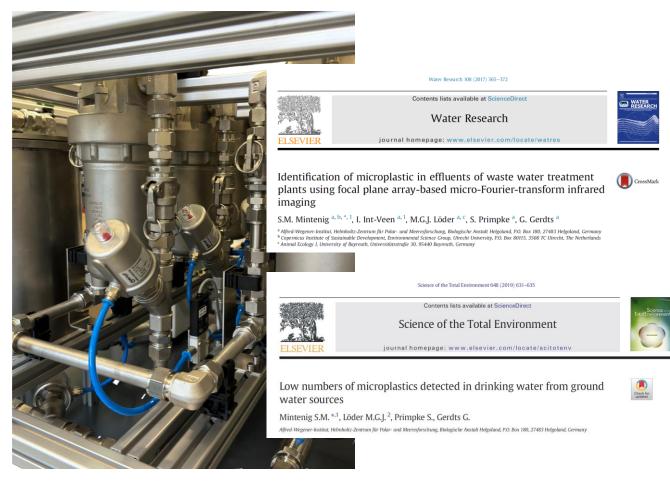
- Made from stainless steel and PTFE
- Easy to maintain or to change filter units
- Sample pre-filtration: 300 µm
- 8 separate cartridge filters: 10 µm (others possible)
- Rinsing by pre-filtered (5 µm) tap water
- Pressure sensor & flow meter
- Automated control (on board software)

General mode of operation

- Water is pumped into the system via installed PTFE pump
- Pre-filtering
 - of samples (self cleaning; avoid clogging)
 - of tap water (rinsing of the system)
- Individual filters are activated by valves (selectable via software)
- Duration, quantity or position of sampling can be configured
- Pressure monitoring (prevent clogging)
- Monitoring of the position and pumped volume (samples can be assigned spatially/temporally; concentration calculations from water volume and filtered MP quantity)

New automatic microplastic sampler - Why prefilter?

80 particles Why prefilter? elongated particles Avoiding clogging of 60 final filter (by e.g. algae blooms) % 300 µm Percentage 40 Why 300 µm? Usual cut-off for larger MP 20 (usage of neuston nets) Loosing particles? 0 The majority of MP particles is smaller than 300 µm Size Class [µm]


New automatic microplastic sampler - Why cartridge filters?

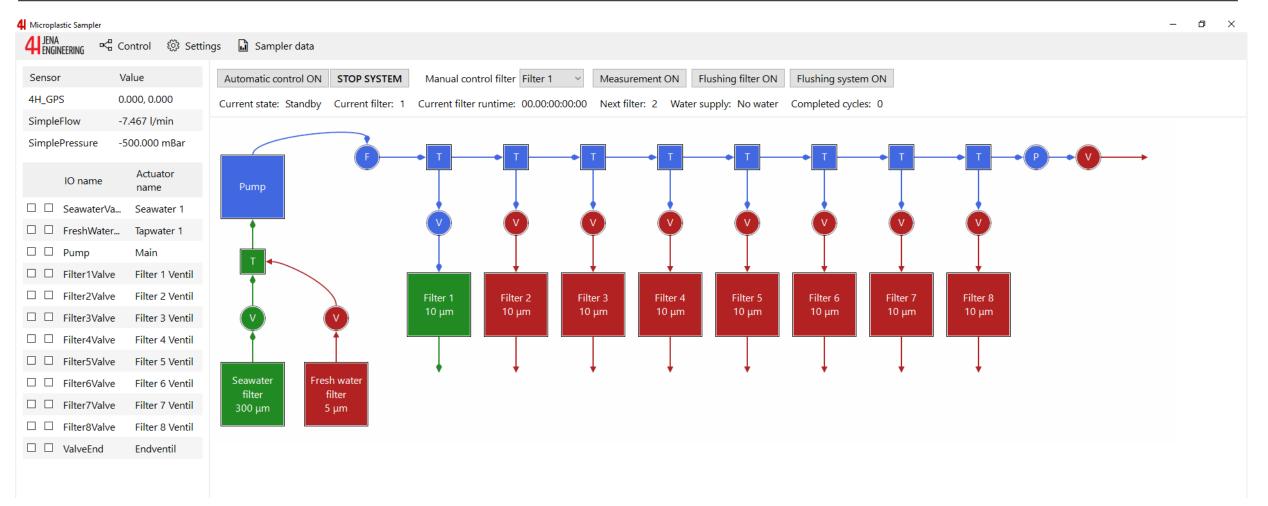
Why cartridge filters?

- Avoiding contamination
- Sampling (on ship) AND extraction (in lab) in one unit
- Approved approach

Why stainless steel cartridge filters?

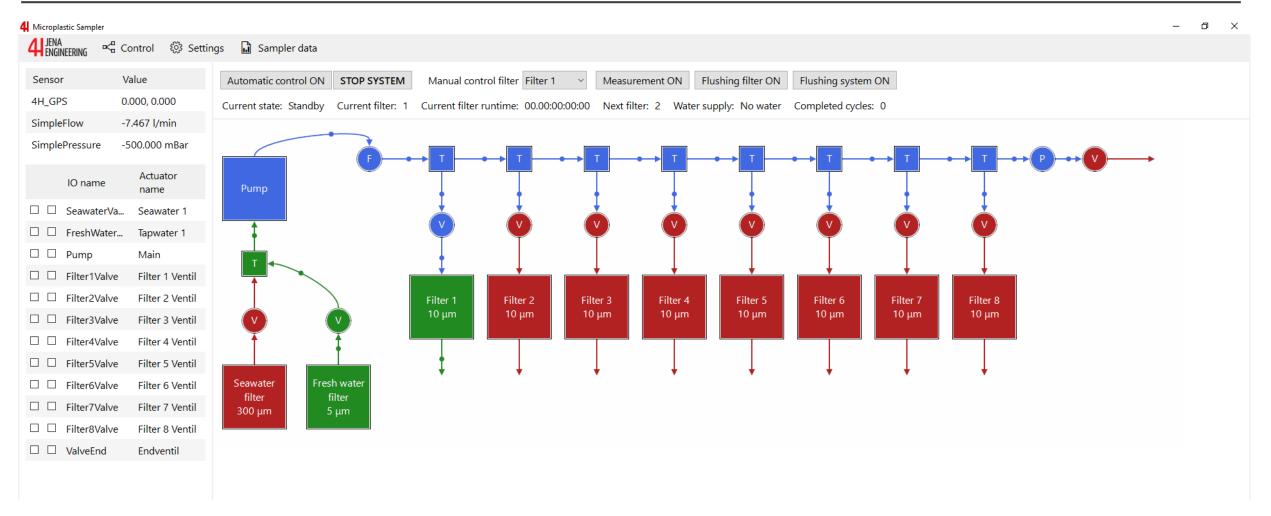
 Avoiding contamination by housing (Mintenig et al., 2017, Mintenig et al., 2019)

Software



Software – sampling configuration

Mi	cropla	stic Sampler								
4	Jena Engin	NEERING 🗠 Control	ŝ	Settings	.1	Sampler data				
Sar	nplei	r mode						Flushing		
UTC	: dat	e time	~					Flushing filter time		
UTC	C dat	e time						60 🔹 sec		
Consecutive sequence by time GPS position SIMULATION				time	End date End time		End time	Flushing system time		
1		01/01/2024	00:0	6:00		01/01/2024	00:07:00	sec		
2		01/01/2024	00:0	00:07:00 00:08:00 00:09:00		01/01/2024	00:08:00	Error monitoring		
3	\square	01/01/2024	00:00			01/01/2024	00:09:00	Pressure		
4		01/01/2024	00:00			01/01/2024	00:10:00	Upper limit value Trigger time		
5		01/01/2024	00:1	0:00		01/01/2024	00:11:00	1000.000 🗘 mBar 3 🛟 sec		
6		01/01/2024	00:1	1:00		01/01/2024	00:12:00	Flow rate		
7		01/01/2024	00:1	2:00	01/01/2024	00:13:00	Lower limit value Trigger time 5.000 I/min			
8		01/01/2024	00:1	3:00		01/01/2024	00:14:00			



Sampling mode

Flushing mode

Software – results overview

4 Microplastic Sampler

4 JENA Control (ல் Settings 🖬 Sampler data

Export as... Browse... Auto save folder: E:\Programmierung\Programme\Version_8\Revision_0\Build_1\LogData\DeviceLog

☑ View measurement data ☑ View flushing data

	GPS start position (measurement)	GPS end position (measurement)	UTC start date time (measurement)	UTC end date time (measurement)	Total time (measurement)	Total volume (measurement)	UTC start date time (flushing)	UTC end date time (flushing)	Total time (flushing)	Total volume (flushing)
1	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
2	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
3	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
4	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
5	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
6	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
7	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001
8	Unknown	Unknown			00:00:00	0.0001			00:00:00	0.0001

– 0 ×

Advantages of this novel sampler:

- Completely free from plastic materials
- Possibility to pre-configure sampling schedule or sample volume
- Internal pressure monitoring prevents from clogging
- Flow meter for sample volume measurement enables for microplastic concentration calculations
- Can be operated autonomously, e.g. on ships-of-opportunity
- Easy to operate and use

Performance tests @AWI – Helgoland in late 2024 (e.g. general operation, recovery etc. etc.)

Installation on the next "Polarstern" (German research vessel) cruise in 2025

Thank you!

Co-development in the framework of NAMC (North Atlantic Microplastics Center; NORCE, Norway)

JENA ENGINEERING (AND) South Atlantic NO R C E

