
OO ABL - Design Pattern

Klaus Erichsen

Presentation and discussion
of seven common OO Design
Pattern in the context of OO

ABL.

27 May 2019 © IAP GmbH, 2019 2 of 39

IAP Fact Sheet

● Progress work experience since 1989
– Company founded 1992 in Hamburg, Germany
– Long term customer relations (since 1992)
– 35+ staff members

● Fields of work – 80% Progress
– Consulting, technology transfer, staff service
– OF-1 Low Code Plattform (since 2005)
– Tools4Progress (Viper, PCase, Skin-Client)
– Service Delivery Partner (SDP) – Elite Level

27 May 2019 © IAP GmbH, 2019 3 of 39

Design Pattern

● „In software engineering, a software design pattern is a general,
reusable solution to a commonly occurring problem within a given
context in software design.“ -Wikipedia

● Design Patterns: Elements of reusable object-oriented software
● Three Types:

– Creational Pattern
– Struktural Pattern
– Behavioral Pattern

● 23 main pattern by 'GoF' (Gang of Four)

27 May 2019 © IAP GmbH, 2019 4 of 39

Pattern 1: Builder

● Type: Creational Pattern
● Use one object to prepare the creation of another object
● Use if the constructor has a lot of parameter
● Why use it?

– More readable
– Parameter are type save and named
– Auto-Complete
– Simple add parameter later

27 May 2019 © IAP GmbH, 2019 5 of 39

Pattern 1: Builder

Initial situation – Multiple constructors

27 May 2019 © IAP GmbH, 2019 6 of 39

Pattern 1: Builder

Initial code with a lot of parameters:

DEFINE VARIABLE oUser AS User NO-UNDO.

oUser = NEW User(
 "Una",
 "Person",
 23,
 "+49 40-30 68 03-26",
 "Valentinskamp 30, 20355 Hamburg"
).

27 May 2019 © IAP GmbH, 2019 7 of 39

Pattern 1: Builder

With Builder Pattern:

27 May 2019 © IAP GmbH, 2019 8 of 39

Pattern 1: Builder

Builder – part of a setter:

CLASS UserBuilder:
…
 METHOD PUBLIC UserBuilder setAge(iAge AS INTEGER):
 THIS-OBJECT:iAge = iAge.
 RETURN THIS-OBJECT.
 END METHOD.
…
END CLASS.

27 May 2019 © IAP GmbH, 2019 9 of 39

Pattern 1: Builder

Builder call:

DEFINE VARIABLE oUser AS User NO-UNDO.
oUser =
 (NEW UserBuilder("Una", "Person")
 :setAge(23)
 :setPhone("+49 40-30 68 03-26")
 :setAddress("Valentinskamp 30, 20355 Hamburg")
 :build()).

27 May 2019 © IAP GmbH, 2019 10 of 39

Pattern 1: Builder

In part:
Real wold example with
extreme number of parameters:
RUN StatusCreate IN l-Import-Library-Handle

 (INPUT l-DB-Cust, /* Cust Code */

 INPUT "", /* Cnee Code */

 INPUT 150, /* status numeric */

 /* tb, 100304; export 8645 with O-E instead of O-I */

 &IF ("{&Exp_8645_with_O-E_v1}") = "TRUE" &THEN

 INPUT "CreateNewRep2" + SSCO-Ord.OrderType + ",StartOrderExport665", /* Create report flag */

 &ELSE

 INPUT "CreateNewRep" + SSCO-Ord.OrderType + ",StartOrderExport665", /* Create report flag */

 &ENDIF

 INPUT TRUE, /* Report NEW = YES */

 INPUT SSCO-o-Movement.Movement-ID, /* NOT Ord-ID */

 INPUT "O", /* Status Type */

 INPUT 0, /* Suborder Number */

 INPUT 0, /* ? */

 INPUT l-StatusDate, /* Status Date */

 INPUT l-StatusTime, /* Status Time */

 /* tb, 050801 */

 INPUT "Customer EDI", /* User Code */

 INPUT FALSE, /* Print 1 */

 INPUT FALSE, /* Print 2 */

 INPUT ?, /* default is Today */

 INPUT "", /* Remarks */

 INPUT SSCO-Ord.OrdQty, /* Qty */

 INPUT 0, /* info code */

 INPUT SSCO-Ord.Send-ID, /* Send-ID */

 INPUT SSCO-Ord.Send-Code, /* Send-Code */

 /* no transmission to CIEL for Road orderlines */

 &IF ("{&Road_Order}") = "TRUE" &THEN

 INPUT (SSCO-Ord.TrnsType-Code <> "R" AND b-Cust.Released), /* IsTransmit */

 &ELSE

 INPUT b-Cust.Released, /* IsTransmit */

 &ENDIF

 INPUT l-Import-Date-asDate, /* created on */

 INPUT l-Import-Time-asChar, /* time on */

 INPUT "", /* knref */

 INPUT "", /* damaged code */

 INPUT "", /* address type-code */

 INPUT ?, /* docs delivery date */

 INPUT "", /* docs delivery time */

 INPUT 0, /* invoice header ID */

 INPUT TRUE, /* check for duplicate status ? */

 INPUT "", /* Reason Code */

 INPUT "", /* Export/Import Flag */

 INPUT "", /* SubStatus */

 INPUT "QtyType=" + l-tt-{&ShipType}660.OrderQtyQualifier + "{&T}" +

 "UTCTime=" + l-UTCTime + "{&T}" +

 "ConC-ID=" + STRING(SSCO-Ord.ConC-ID), /* additional Fields ({&T}-separated list */

 OUTPUT l-Stat-Code, /* status code. if ? then status invalid */

 OUTPUT l-Return-Code /* returncode passed by called procedure */

) NO-ERROR.

RUN StatusCreate IN l-Import-Library-
Handle
 (INPUT l-DB-Cust,

 INPUT "",

 INPUT 150,
...
 INPUT
 "QtyType=" + OrderQtyQualifier
 + "{&T}"
 + "UTCTime=" + l-UTCTime
 + "{&T}"
 + "ConC-ID=" + SSCO-Ord.ConC-ID
...
) NO-ERROR.

27 May 2019 © IAP GmbH, 2019 11 of 39

Pattern 1: Builder

This call with Builder (part of):
DEFINE VARIABLE oStatusCreate AS StatusCreate NO-UNDO.

oStatusCreate =
 (NEW StatusCreateBuilder()
 :setCustCode(l-DB-Cust)
 :setStatusNumeric(150)
...
 :setQtyType(OrderQtyQualifier)
 :setUTCTime(l-UTCTime)
 :setConCID(SSCO-Ord.ConC-ID)
...
 :build()).

27 May 2019 © IAP GmbH, 2019 12 of 39

Builder - Discussion

● Advantages
– Improves readability
– Named parameters
– Auto-Complete supported
– Allows late changes

● Practical use in 4 GL
– Very good

● Disadvantages
– 'None'

(Multiple calls need time)

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Hidden validations
● Nesting objects
● Hierarchical structures

(call is linear)
– AVOID the above

27 May 2019 © IAP GmbH, 2019 13 of 39

Pattern 2: Singleton

● Type: Creational Pattern
● Kind of "global objects" in OO
● When to use

– Need a global, single object all over the application
● Why to use:

– Inheritance possible
– Has some logic during instantiation
– Saves resources

● Examples:
– Configuration
– Communication setup

27 May 2019 © IAP GmbH, 2019 14 of 39

Pattern 2: Singleton

Class with Singleton Pattern:
CLASS Konfiguration:
...
 DEFINE PUBLIC STATIC PROPERTY oInstance AS Configuration
 PUBLIC GET():
 IF oInstance = ? THEN
 oInstance = NEW Configuration().
 RETURN oInstance.
 END GET.
 PRIVATE SET.

 CONSTRUCTOR PRIVATE Configuration():
 loadConfig().
 END CONSTRUCTOR.
...
END CLASS.

27 May 2019 © IAP GmbH, 2019 15 of 39

Pattern 2: Singleton

Singleton call:
DEFINE VARIABLE oConf AS Configuration NO-UNDO.
DEFINE VARIABLE cMode AS CHARAKTER NO-UNDO.

oConf = Configuration:oInstance.
oConf:LoadFromFile().

cMode = oKonf:getValue("RunMode").

27 May 2019 © IAP GmbH, 2019 16 of 39

Singleton - Discussion

● Advantages
– Solves problem of global settings
– Inheritance is possible (which is not

possible from a static object)
– Has some logic during instantiation
– Can be re-instantiated

(not possible with a pure static
object)

● Practical use in 4 GL
– Good

● Disadvantages
– 'None'

(But seductive to misuse)

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Write in the object
● Use as data structure
● Use it for states

– AVOID the above

27 May 2019 © IAP GmbH, 2019 17 of 39

Pattern 3: Multiton

● Type: Creational Pattern
● One static access method
● Objects saved with ID
● When to use:

– N objects (data members) will be
accessed randomly

● Why to use:
– Performance
– Save ressources
– Simple code

27 May 2019 © IAP GmbH, 2019 18 of 39

Pattern 3: Multiton

Sample part 1 (static Temp-Table):

...
 DEFINE PUBLIC PROPERTY iCustNum AS INTEGER NO-UNDO GET. PRIVATE SET.
 DEFINE PUBLIC PROPERTY cName AS CHARACTER NO-UNDO GET. PRIVATE SET.

 DEFINE PRIVATE STATIC TEMP-TABLE ttCustomer
 FIELD custNum AS INTEGER
 FIELD obj AS Progress.Lang.Object
 INDEX ID custNum.
 .
...
END CLASS.

27 May 2019 © IAP GmbH, 2019 19 of 39

Pattern 3: Multiton

Sample part 2 (static access method):
CLASS Customer:
...
 METHOD PUBLIC STATIC Customer getInstance(iCustNum AS INTEGER):
 FIND FIRST ttCustomer WHERE ttCustomer.custNum = iCustNum NO-LOCK NO-ERROR.
 IF NOT AVAILABLE ttCustomer THEN DO:
 CREATE ttCustomer.
 ASSIGN
 ttCustomer.custNum = iCustNum
 ttCustomer.obj = NEW Customer(iCustNum)
 .
 END.

 RETURN CAST(ttCustomer.obj, Customer).
 END METHOD.
...
END CLASS.

27 May 2019 © IAP GmbH, 2019 20 of 39

Pattern 3: Multiton

Sample part 3 (private constructor):
CLASS Customer:
...
 CONSTRUCTOR PRIVATE Customer(iCustNum AS INTEGER):
 DEFINE BUFFER bCustomer FOR Customer.

 FIND FIRST bCustomer WHERE bCustomer.CustNum = iCustNum NO-LOCK NO-ERROR.
 IF AVAILABLE bCustomer THEN DO:
 THIS-OBJECT:cName = bCustomer.Name.
 THIS-OBJECT:iCustNum = bCustomer.CustNum.
 END.
 END CONSTRUCTOR.
...
END CLASS.

27 May 2019 © IAP GmbH, 2019 21 of 39

Pattern 3: Multiton

Sample part 4 (usage):
DEFINE VARIABLE oMultiCust AS multiCust NO-UNDO.
...

oMultiCust = 03_multiton.multiCust:getInstance(1537).
cName1 = oMultiCust:cCustName.
oMultiCust = 03_multiton.MultiCust:getInstance(1).
cName2 = oMultiCust:cCustName.

27 May 2019 © IAP GmbH, 2019 22 of 39

Multiton - Discussion

● Advantages
– Simple code
– Requests get same data

(DB, WebServices, ESB...)

● Practical use in 4 GL
– Poor

(Performance)

● Disadvantages
– Object accumulate ('global')
– Slow in OO ABL

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Write in the objects
● Use it for states

– AVOID the above

27 May 2019 © IAP GmbH, 2019 23 of 39

Pattern 4: Lazy Loading

● Type: Creational Pattern
● Delay until access:

– Object creation
– Calculations, summaries...
– Other expensive processing

● When to use:
– Initialising of a resource (class, tab, communication…) takes long

● Why to use:
– Fast start
– Save effort for things not used in current session

27 May 2019 © IAP GmbH, 2019 24 of 39

Pattern 4: Lazy Loading

Sample part 1 (constructor & other properties):
CLASS Invoice:
...
 CONSTRUCTOR PUBLIC Invoice(iInvoiceNum AS INTEGER):
 DEFINE BUFFER bInvoice FOR Invoice.

 FIND FIRST bInvoice WHERE bInvoice.Invoicenum = iInvoiceNum NO-LOCK NO-ERROR.
 IF AVAILABLE bInvoice THEN DO:
 THIS-OBJECT:iInvoiceNum = iInvoiceNum.
 THIS-OBJECT:iCustNum = bInvoice.CustNum.
 END.
 END CONSTRUCTOR.
...
END CLASS.

27 May 2019 © IAP GmbH, 2019 25 of 39

Pattern 4: Lazy Loading

Sample part 2 (property):
 DEFINE PUBLIC PROPERTY iInvoiceSum AS INTEGER NO-UNDO INITIAL ?
 PUBLIC GET:
 IF iInvoiceSum = ? THEN DO:
 DEFINE VARIABLE iCN AS INTEGER NO-UNDO.
 iCN = THIS-OBJECT:iCustNum.
 //loop through invoices of customer
 // FOR EACH invoices... WHERE invoices.CustNum = iCustNum...
 //accumulate invoices
 END.
 RETURN iInvoiceSum.
 END GET.
 PRIVATE SET.

27 May 2019 © IAP GmbH, 2019 26 of 39

Lazy Loading - Discussion

● Advantages / Use cases
– Access aggregated data
– Infinite scroll

(images, browser)
– Tab widget is selected
– Initialize a service for first use

(ESB, log system, rpc…)

● Practical use in 4 GL
– Very good

● Disadvantages
– Extracting (dislocating) code
– May increase overall calls to DB
– May show inconsistent data
– Delay may show up later

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Write in the objects
● Use it for states

– AVOID the above

27 May 2019 © IAP GmbH, 2019 27 of 39

Pattern 5: Adapter

● Type: Struktural Pattern
● Combine two incompatible interfaces
● When to us:

– Make systems more flexible
– Wrap 3rd party / old code

● Why to use:
– Have only one (simpler) interface
– Integrate other libraries / 3rd party

27 May 2019 © IAP GmbH, 2019 28 of 39

Pattern 5: Adapter

27 May 2019 © IAP GmbH, 2019 29 of 39

Pattern 5: Adapter

CLASS OpenStreetMapAdapter IMPLEMENTS IMaps:
 DEFINE PRIVATE PROPERTY oOpenStreetMap AS OpenStreetMap NO-UNDO
 PRIVATE GET.
 PRIVATE SET.

 CONSTRUCTOR PUBLIC OpenStreetMapAdapter():
 oOpenStreetMap = NEW OpenStreetMap().
 END CONSTRUCTOR.

 METHOD PUBLIC CHARACTER getAddress(cLat AS CHARACTER ,cLng AS
CHARACTER):
 RETURN oOpenStreetMap:search(cLat, cLng):Address.
 END METHOD.
END CLASS.

27 May 2019 © IAP GmbH, 2019 30 of 39

Adapter - Discussion

● Advantages
– Allow subsystem changes
– Reuse objects
– Adapt 3rd party objects
– Simplify

(e.g. remove complex API)

● Practical use in 4 GL
– Very good

● Disadvantages
– More code
– Small run-time overhead

● Pattern or Anti-Pattern
– It is a pattern

27 May 2019 © IAP GmbH, 2019 31 of 39

Pattern 6: Factory Factory

● Type: Creational Pattern
● Use an abstract method for object creation
● When to use:

– Make code more flexible
– During compile the final class is unknown

● Why to use:
– Have generic Interface
– Loose coupling
– Extensible structure

● Use samples:
– Create UI elements (classic OE UI, .NET UI)
– Unit testing

27 May 2019 © IAP GmbH, 2019 32 of 39

Pattern 6: Factory

27 May 2019 © IAP GmbH, 2019 33 of 39

Pattern 6: Factory

Show Demo Code

27 May 2019 © IAP GmbH, 2019 34 of 39

Pattern - Discussion

● Advantages
– Loose coupling (creator / created)
– Same creation code for every case
– Extensible
– Testing (mock) is simple
– Increase abstraction level

(reduce maintenance)

● Practical use in 4 GL
– Very good

● Disadvantages
– Add complexity and some code

● Pattern or Anti-Pattern
– It is a pattern

27 May 2019 © IAP GmbH, 2019 35 of 39

Pattern 7: Proxy

● Type: Behavioural Pattern
● Why to use:

– Use remote objects like local objects
– Protect an object (security)
– Reduce visible object complexity

● Why to use:
– More independence (interfaces)
– Create distributed systems
– Simpler programming

● Examples:
– Authentication
– Remote method invocation

27 May 2019 © IAP GmbH, 2019 36 of 39

Pattern 7: Proxy

27 May 2019 © IAP GmbH, 2019 37 of 39

Pattern 7: Proxy

Show Demo Code

27 May 2019 © IAP GmbH, 2019 38 of 39

Conclusion

● Seven of 23 pattern discussed:
– Builder, Singleton, Multiton, Lazy Loading, Adapter, Factory, Proxy

● A company should defines pattern policies
● When there is a useful pattern, use it

– It helps to organize a project
– It helps to talk about code

27 May 2019 © IAP GmbH, 2019 39 of 39

Questions?

Full article (online / PDF)
and sample sources

 available on Monday:

https://www.iap.de/blog
https://www.iap.de/downloads

Klaus Erichsen

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Folie 39

