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IAP Fact Sheet

● Progress work experience since 1989
– Company founded 1992 in Hamburg, Germany
– Long term customer relations (since 1992)
– 35+ staff members

● Fields of work – 80% Progress
– Consulting, technology transfer, staff service
– OF-1 Low Code Plattform (since 2005)
– Tools4Progress (Viper, PCase, Skin-Client)
– Service Delivery Partner (SDP) – Elite Level
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Design Pattern

● „In software engineering, a software design pattern is a general, 
reusable solution to a commonly occurring problem within a given 
context in software design.“ -Wikipedia

● Design Patterns: Elements of reusable object-oriented software
● Three Types:

– Creational Pattern
– Struktural Pattern
– Behavioral Pattern

● 23 main pattern by 'GoF' (Gang of Four)
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Pattern 1: Builder

● Type: Creational Pattern
● Use one object to prepare the creation of another object
● Use if the constructor has a lot of parameter
● Why use it?

– More readable
– Parameter are type save and named
– Auto-Complete
– Simple add parameter later
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Pattern 1: Builder

Initial situation – Multiple constructors
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Pattern 1: Builder

Initial code with a lot of parameters:

DEFINE VARIABLE oUser AS User NO-UNDO.

oUser = NEW User(
  "Una", 
  "Person", 
  23, 
  "+49 40-30 68 03-26", 
  "Valentinskamp 30, 20355 Hamburg"
).



27 May 2019 © IAP GmbH, 2019 7 of 39

Pattern 1: Builder

With Builder Pattern:
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Pattern 1: Builder

Builder – part of a setter:

CLASS UserBuilder:
…
  METHOD PUBLIC UserBuilder setAge(iAge AS INTEGER):
    THIS-OBJECT:iAge = iAge.
    RETURN THIS-OBJECT.
  END METHOD.
…
END CLASS.
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Pattern 1: Builder

Builder call:

DEFINE VARIABLE oUser AS User NO-UNDO.
oUser =
  (NEW UserBuilder("Una", "Person")
  :setAge(23)
  :setPhone("+49 40-30 68 03-26")
  :setAddress("Valentinskamp 30, 20355 Hamburg")
  :build()).
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Pattern 1: Builder

In part:
Real wold example with
extreme number of parameters:
RUN StatusCreate IN l-Import-Library-Handle

  ( INPUT   l-DB-Cust,                   /* Cust Code */

    INPUT   "",                          /* Cnee Code */

    INPUT   150,                         /* status numeric */

  /* tb, 100304; export 8645 with O-E instead of O-I */

  &IF ("{&Exp_8645_with_O-E_v1}") = "TRUE" &THEN

    INPUT   "CreateNewRep2" + SSCO-Ord.OrderType + ",StartOrderExport665",  /* Create report flag */

  &ELSE

    INPUT   "CreateNewRep" + SSCO-Ord.OrderType + ",StartOrderExport665",  /* Create report flag */

  &ENDIF

    INPUT   TRUE,                        /* Report NEW = YES */

    INPUT   SSCO-o-Movement.Movement-ID, /* NOT Ord-ID */

    INPUT   "O",                         /* Status Type */

    INPUT   0,                           /* Suborder Number */

    INPUT   0,                           /* ? */

    INPUT   l-StatusDate,                /* Status Date */

    INPUT   l-StatusTime,                /* Status Time */

  /* tb, 050801 */

    INPUT   "Customer EDI",           /* User Code */

    INPUT   FALSE,                       /* Print 1 */

    INPUT   FALSE,                       /* Print 2 */

    INPUT   ?,                           /* default is Today */

    INPUT   "",                          /* Remarks */

    INPUT   SSCO-Ord.OrdQty,             /* Qty */

    INPUT   0,                           /* info code */

    INPUT   SSCO-Ord.Send-ID,            /* Send-ID */

    INPUT   SSCO-Ord.Send-Code,          /* Send-Code */

    /* no transmission to CIEL for Road orderlines */

    &IF ("{&Road_Order}") = "TRUE" &THEN

    INPUT   (SSCO-Ord.TrnsType-Code <> "R" AND b-Cust.Released), /* IsTransmit */

    &ELSE

    INPUT   b-Cust.Released,             /* IsTransmit */

    &ENDIF

    INPUT   l-Import-Date-asDate,        /* created on */

    INPUT   l-Import-Time-asChar,        /* time on */

    INPUT   "",                          /* knref */

    INPUT   "",                          /* damaged code */

    INPUT   "",                          /* address type-code */

    INPUT   ?,                           /* docs delivery date */

    INPUT   "",                          /* docs delivery time */

    INPUT   0,                           /* invoice header ID */

    INPUT   TRUE,                        /* check for duplicate status ? */

    INPUT   "",                          /* Reason Code */

    INPUT   "",                          /* Export/Import Flag */

    INPUT   "",                          /* SubStatus */

    INPUT   "QtyType=" + l-tt-{&ShipType}660.OrderQtyQualifier        + "{&T}" +

            "UTCTime=" + l-UTCTime                                    + "{&T}" +

            "ConC-ID=" + STRING(SSCO-Ord.ConC-ID), /* additional Fields ({&T}-separated list */

    OUTPUT  l-Stat-Code,              /* status code. if ? then status invalid */

    OUTPUT  l-Return-Code             /* returncode passed by called procedure */

 ) NO-ERROR.

RUN StatusCreate IN l-Import-Library-
Handle
  ( INPUT   l-DB-Cust,                  
 
    INPUT   "",                         
 
    INPUT   150,
...                  
    INPUT   
      "QtyType=" + OrderQtyQualifier    
    + "{&T}" 
      + "UTCTime=" + l-UTCTime
      + "{&T}" 
      + "ConC-ID=" + SSCO-Ord.ConC-ID
...
) NO-ERROR. 
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Pattern 1: Builder

This call with Builder (part of):
DEFINE VARIABLE oStatusCreate AS StatusCreate NO-UNDO.

oStatusCreate =
  (NEW StatusCreateBuilder()
  :setCustCode(l-DB-Cust)
  :setStatusNumeric(150)
...
  :setQtyType(OrderQtyQualifier)
  :setUTCTime(l-UTCTime)
  :setConCID(SSCO-Ord.ConC-ID)
...
  :build()).
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Builder - Discussion

● Advantages
– Improves readability
– Named parameters
– Auto-Complete supported
– Allows late changes

● Practical use in 4 GL
– Very good

● Disadvantages
– 'None'

(Multiple calls need time)

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Hidden validations
● Nesting objects
● Hierarchical structures

(call is linear) 
– AVOID the above
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Pattern 2: Singleton

● Type: Creational Pattern
● Kind of "global objects" in OO
● When to use

– Need a global, single object all over the application
● Why to use:

– Inheritance possible
– Has some logic during instantiation
– Saves resources

● Examples:
– Configuration
– Communication setup
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Pattern 2: Singleton

Class with Singleton Pattern:
CLASS Konfiguration:
...
  DEFINE PUBLIC STATIC PROPERTY oInstance AS Configuration
    PUBLIC GET():
      IF oInstance = ? THEN
        oInstance = NEW Configuration().
      RETURN oInstance.
    END GET.
    PRIVATE SET.

  CONSTRUCTOR PRIVATE Configuration():
    loadConfig().
  END CONSTRUCTOR.
...
END CLASS.



27 May 2019 © IAP GmbH, 2019 15 of 39

Pattern 2: Singleton

Singleton call:
DEFINE VARIABLE oConf AS Configuration NO-UNDO.
DEFINE VARIABLE cMode AS CHARAKTER     NO-UNDO.

oConf = Configuration:oInstance.
oConf:LoadFromFile().

cMode = oKonf:getValue("RunMode").
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Singleton - Discussion

● Advantages
– Solves problem of global settings
– Inheritance is possible (which is not 

possible from a static object)
– Has some logic during instantiation
– Can be re-instantiated

(not possible with a pure static 
object)

● Practical use in 4 GL
– Good

● Disadvantages
– 'None'

(But seductive to misuse)

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Write in the object
● Use as data structure
● Use it for states

– AVOID the above



27 May 2019 © IAP GmbH, 2019 17 of 39

Pattern 3: Multiton

● Type: Creational Pattern
● One static access method
● Objects saved with ID
● When to use:

– N objects (data members) will be 
accessed randomly

● Why to use:
– Performance
– Save ressources
– Simple code
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Pattern 3: Multiton

Sample part 1 (static Temp-Table):

...
  DEFINE PUBLIC PROPERTY iCustNum AS INTEGER NO-UNDO GET. PRIVATE SET.
  DEFINE PUBLIC PROPERTY cName AS CHARACTER NO-UNDO GET. PRIVATE SET.

  DEFINE PRIVATE STATIC TEMP-TABLE ttCustomer
    FIELD custNum AS INTEGER
    FIELD obj     AS Progress.Lang.Object
    INDEX ID custNum.
  .
...
END CLASS.
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Pattern 3: Multiton

Sample part 2 (static access method):
CLASS Customer:
...
  METHOD PUBLIC STATIC Customer getInstance(iCustNum AS INTEGER):
    FIND FIRST ttCustomer WHERE ttCustomer.custNum = iCustNum NO-LOCK NO-ERROR.
    IF NOT AVAILABLE ttCustomer THEN DO:
      CREATE ttCustomer.
      ASSIGN
        ttCustomer.custNum   = iCustNum
        ttCustomer.obj  = NEW Customer(iCustNum)
      .
    END.

    RETURN CAST(ttCustomer.obj, Customer).
  END METHOD.
...
END CLASS.
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Pattern 3: Multiton

Sample part 3 (private constructor):
CLASS Customer:
...
  CONSTRUCTOR PRIVATE Customer(iCustNum AS INTEGER):
    DEFINE BUFFER bCustomer FOR Customer.

    FIND FIRST bCustomer WHERE bCustomer.CustNum = iCustNum NO-LOCK NO-ERROR.
    IF AVAILABLE bCustomer THEN DO:
      THIS-OBJECT:cName    = bCustomer.Name.
      THIS-OBJECT:iCustNum = bCustomer.CustNum.
    END.
  END CONSTRUCTOR.
...
END CLASS.
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Pattern 3: Multiton

Sample part 4 (usage):
DEFINE VARIABLE oMultiCust AS multiCust NO-UNDO.
...

oMultiCust = 03_multiton.multiCust:getInstance(1537).
cName1 = oMultiCust:cCustName.
oMultiCust = 03_multiton.MultiCust:getInstance(1).
cName2 = oMultiCust:cCustName.
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Multiton - Discussion

● Advantages
– Simple code
– Requests get same data

(DB, WebServices, ESB...)

● Practical use in 4 GL
– Poor

(Performance)

● Disadvantages
– Object accumulate ('global')
– Slow in OO ABL

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Write in the objects
● Use it for states

– AVOID the above
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Pattern 4: Lazy Loading

● Type: Creational Pattern
● Delay until access:

– Object creation
– Calculations, summaries...
– Other expensive processing

● When to use:
– Initialising of a resource (class, tab, communication…) takes long

● Why to use:
– Fast start
– Save effort for things not used in current session
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Pattern 4: Lazy Loading

Sample part 1 (constructor & other properties): 
CLASS Invoice:
...
  CONSTRUCTOR PUBLIC Invoice(iInvoiceNum AS INTEGER):
    DEFINE BUFFER bInvoice FOR Invoice.

    FIND FIRST bInvoice WHERE bInvoice.Invoicenum = iInvoiceNum NO-LOCK NO-ERROR.
    IF AVAILABLE bInvoice THEN DO:
      THIS-OBJECT:iInvoiceNum = iInvoiceNum.
      THIS-OBJECT:iCustNum    = bInvoice.CustNum.
    END.
  END CONSTRUCTOR.
...
END CLASS.
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Pattern 4: Lazy Loading

Sample part 2 (property): 
  DEFINE PUBLIC PROPERTY iInvoiceSum AS INTEGER NO-UNDO INITIAL ?
    PUBLIC GET:
      IF iInvoiceSum = ? THEN DO:
        DEFINE VARIABLE iCN AS INTEGER NO-UNDO.
        iCN = THIS-OBJECT:iCustNum.
        //loop through invoices of customer
        // FOR EACH invoices... WHERE invoices.CustNum = iCustNum...
        //accumulate invoices
      END.
      RETURN iInvoiceSum.
    END GET.
    PRIVATE SET.
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Lazy Loading - Discussion

● Advantages / Use cases
– Access aggregated data
– Infinite scroll

(images, browser)
– Tab widget is selected
– Initialize a service for first use

(ESB, log system, rpc…)

● Practical use in 4 GL
– Very good

● Disadvantages
– Extracting (dislocating) code
– May increase overall calls to DB
– May show inconsistent data
– Delay may show up later

● Pattern or Anti-Pattern
– What will make it an Anti-Pattern

● Write in the objects
● Use it for states

– AVOID the above
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Pattern 5: Adapter

● Type: Struktural Pattern
● Combine two incompatible interfaces
● When to us:

– Make systems more flexible
– Wrap 3rd party / old code

● Why to use:
– Have only one (simpler) interface
– Integrate other libraries / 3rd party
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Pattern 5: Adapter
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Pattern 5: Adapter

CLASS OpenStreetMapAdapter IMPLEMENTS IMaps:
  DEFINE PRIVATE PROPERTY oOpenStreetMap AS OpenStreetMap NO-UNDO
    PRIVATE GET.
    PRIVATE SET.

  CONSTRUCTOR PUBLIC OpenStreetMapAdapter():
    oOpenStreetMap = NEW OpenStreetMap().
  END CONSTRUCTOR.

  METHOD PUBLIC CHARACTER getAddress(cLat AS CHARACTER ,cLng AS 
CHARACTER):
     RETURN oOpenStreetMap:search(cLat, cLng):Address.
  END METHOD.
END CLASS.
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Adapter - Discussion

● Advantages
– Allow subsystem changes
– Reuse objects
– Adapt 3rd party objects
– Simplify

(e.g. remove complex API)

● Practical use in 4 GL
– Very good

● Disadvantages
– More code
– Small run-time overhead

● Pattern or Anti-Pattern
– It is a pattern
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Pattern 6: Factory Factory

● Type: Creational Pattern
● Use an abstract method for object creation
● When to use:

– Make code more flexible
– During compile the final class is unknown

● Why to use:
– Have generic Interface
– Loose coupling
– Extensible structure

● Use samples:
– Create UI elements (classic OE UI, .NET UI)
– Unit testing
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Pattern 6: Factory
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Pattern 6: Factory

Show Demo Code
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Pattern - Discussion

● Advantages
– Loose coupling (creator / created)
– Same creation code for every case
– Extensible
– Testing (mock) is simple
– Increase abstraction level

(reduce maintenance)

● Practical use in 4 GL
– Very good

● Disadvantages
– Add complexity and some code

● Pattern or Anti-Pattern
– It is a pattern
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Pattern 7: Proxy

● Type: Behavioural Pattern
● Why to use:

– Use remote objects like local objects
– Protect an object (security)
– Reduce visible object complexity

● Why to use:
– More independence (interfaces)
– Create distributed systems
– Simpler programming

● Examples:
– Authentication
– Remote method invocation
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Pattern 7: Proxy
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Pattern 7: Proxy

Show Demo Code
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Conclusion

● Seven of 23 pattern discussed:
– Builder, Singleton, Multiton, Lazy Loading, Adapter, Factory, Proxy

● A company should defines pattern policies
● When there is a useful pattern, use it

– It helps to organize a project
– It helps to talk about code
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Questions?

Full article (online / PDF)
and sample sources

 available on Monday:

https://www.iap.de/blog
https://www.iap.de/downloads

Klaus Erichsen
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