HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Does money make the world go round?

- The journey of Euro banknotes and coins as a diffusion process

A presentation at SAT 2006, September 9th, 2006 Antti Lauri

Department of Physical Sciences Division of Atmospheric Sciences

History (and near future) of the Euro

- 1957: The Treaty of Rome declared a common European market
- 1986: The Single European Act
- 1992: The Treaty of European Union introducing Economic and Monetary Union
- 1999: The exchange rates of the participating currencies were set
- 2002: Introduction of the new cash currency
- 2007 \rightarrow : New member countries will join the Euro

The Science Diffusion

A transport phenomenon

- Spontaneous spreading of something from higher concentration to lower one
 - Heat, particles, momentum, …
- Diffusion equilibrium is reached when concentrations of a diffusing substance are homogeneous throughout the system

The EuroBillTracker (EBT) community

- An international non-profit volunteer team dedicated to tracking Euro notes around the world
- Each user enters the printer code, serial number and location of the place the note was got from of the notes they get
- Currently (September 7th, 2006)
 - 90 991 users
 - 20 419 964 notes
 - 71 120 notes entered more than once (0.35%)

http://www.eurobilltracker.com

The Science

Possible ways to model the Euro diffusion

Diffusion equation

$$\frac{\partial u}{\partial t} = c\nabla^2 u$$

Markov chains

Monte Carlo simulations

If there are nonlinear phenomena

The Technology

The Monte Carlo simulation method

- Basic idea: coins and banknotes move from one country to another with travellers.
- Residence time algorithm was used.
 - Also known as BKL (Bortz, Kalos, Lebowitz), kinetic Monte Carlo.
 - Transitions selected randomly according to probabilities in a cumulative function
 - Total number of probabilities in the cumulative function is
 12 x 12 12 = 132

Main assumptions

- The diffusion rate: related to the number of travellers between Euro countries and the number of coins/notes they carry with them
- The replenishment rate: an average lifetime of 2.5 years for banknotes, much longer for coins (~25 years)
- The transportation of coins and banknotes from "overpopulated" to "underpopulated" areas

Results: notes / no transportation

Results: notes / transportation monthly from the most overpopulated to the most underpopulated country

Results: banknotes in Germany

Results: banknotes in Finland

Results: banknotes in Austria

Results: coins and banknotes in Belgium

Conclusions

- The predicted diffusion of Euro banknotes compares surprisingly well with the empirical data just using a few simple assumptions
- Diffusion equilibrium is never reached
- The local equilibrium in each country is different for coins and notes because of the differences in number, lifetimes and transportation statistics
- The time needed to reach the local equilibrium seems to be approx. 20 years with the parameters used

Thanks

Prof. Kai Nordlund for the idea

Mr. Tommi Bergman, Ms. Anna Ruhala and Mr. Walter Rydman for co-operation with the first version of the coin diffusion model in 2002