

Medical Physics in Diagnostics of Musculoskeletal Diseases

Jukka Jurvelin

Department of Physics, University of Kuopio, Finland and Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Finland

OSTEOARTHRITIS

ap X-ray

Healthy joint (Male, 16 years) OA joint (Female, 50 years)

OA Diagnostics MRI

PD, sagittal, 50 yr, male, thin, pathological heterogeneity PD, axial, 28 yr, female, chondromalacia 3D-reconstruction 56 yr, female, OA

M. Nieminen, BBC 2005

Cartilage Repair ACT operation, male 34 y, OCD FMC

I. Kiviranta, 2005

Tissue (e.g. Cartilage) Quality

Integrity of cartilage depends on the tissue

- structure (e.g. MRI, ultrasound, optics)
- composition (e.g. biochemistry, FTIR)
- mechanical properties (e.g. indentation, ultrasound)

New ultrasound and MRI techniques are developed and applied for the characterization of normal articular cartilage and bone, diagnosis of osteoarthritis and osteoporosis as well as for monitoring of cartilage repair. Microscopic and biomechanical methods provide well-established reference techniques for the validation of ultrasound/MRI techniques

Fourier Transform Infrared Spectroscopy

Cartilage and Bone Ultrasound

Gd-DTPA(2-) – ENHANCED T₁ IMAGING¹⁾

Quantitative MRI of articular cartilage T2 mapping

• Cartilage water strongly interacts with collagen directly/indirectly \rightarrow T₂ relaxation time of tissue water may be reflective of collagen integrity¹⁾

Cartilage Mechanics Modelling

Continuity equation: $\nabla \cdot (\phi^{s} \mathbf{v}^{s} + \phi^{f} \mathbf{v}^{f}) = 0$ Momentum equations: $\nabla \cdot (\sigma^{\alpha} + \pi^{\alpha}) = 0 \quad \alpha = s, f$ Constitutive equation: $\sigma^{f} = -\sigma^{f} p \mathbf{I}$ $\sigma^{s} = -\phi^{s} p \mathbf{I} + \overline{\sigma}^{s}$ $\pi^{s} = -\pi^{f} = K(\mathbf{v}^{f} - \mathbf{v}^{s})$

Cartilage Mechanics Modelling

Bone Ultrasound Modelling

In Vivo Diagnostics Mechanical Indentation

Lyyra et al.; Med. Eng. Phys. 17:395-399, 1995

INDENTER FORCE (F) INDICATES CARTILAGE STIFFNESS

Cartilage Mechanics Modelling

In Vivo Diagnostics

Quantitative Ultrasound Analysis

 Ultrasound Reflection coefficient (R) and Integrated Reflection Coefficient (IRC)¹ can be calculated for both cartilage surface and cartilage-bone interface

$$R = \frac{1}{m} \sum_{i=1}^{m} \frac{A_i}{A_i^{ref}}$$

$$IRC = \frac{1}{\Delta f} \int_{\Delta f} R_c^{\ dB}(f) df$$

$$m$$
 = number of scan lines
 A_i = amplitude from the interface
 A_{iref} = reference amplitude from
PBS-air interface

 $R_{c}^{dB}(f)$ = energy reflection coefficient of the interface (dB scale) Δf = frequency range

¹Cherin et al.. Ultrasound Med Biol 24:341-354, 1998

In Vivo Diagnostics

High resolution ultrasound imaging

Quantitative MRI

T₁-imaging

T₁-map

dGEMRIC

- in ACT graft dGEMRIC shows PG concentrations comparable to adjacent hyaline cartilage
- T2 in graft has higher T2 as compared to surrounding tissue. This is anticipated to relate to a collagen network different from normal cartilage

ACT repair in human knee

Patient	Arthroscopic finding		INDENTATION FORCE			T1 RELAXATION TIME	
Nro	ICRS grade	graft (N)	control (N)	ratio (% of control)	graft (ms) mean ± SD	control (ms) mean ± SD	ratio (% of control)
27	11	1.8	5.7	31	388 ± 54	426 ± 44	91
26	11	1.2	2.1ª	59	421 ± 52	366 ± 55	115
19	9	1.3	3.3	38	381 ± 60	422 ± 64	90
28	10	0.9	3.2	27	470 ± 44	339 ± 67	139

BASIC SCIENCE RESEARCH -> NEW IDEA AND MEASUREMENT PRINCIPLE

THEORETICAL/COMPUTATIONAL AND EXPERIMENTAL VALIDATION

From innovation to FDA approved product...

Acknowledgements

BBC-group

University of Kuopio Kuopio University Hospital

Professor Heikki Helminen Docent Ilkka Kiviranta Professor Heikki Kröger

Academy of Finland TEKES

