

Economic Evaluation alongside natural experiments

Heather Brown

Identify appropriate linked datasets

- Put the data into context
- How does the study fit into the local/political context-justify your choice of data
- Why is your data the best for your question
- How much pre-treatment data you have

- How do you choose an appropriate comparison group?
- Consider multiple comparison groups

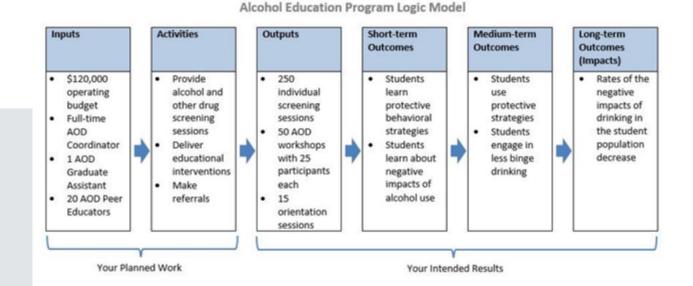
- Methodologies to control for selection bias
- 1. Sampling Bias
- 2. Survivorship Bias
- 3. Exclusion Bias
- 4. Volunteer or Self-selection Bias
- 5. Attrition Bias
- 6. Recall Bias

- Measurement Error (due to differences in timing because of the intervention and data)
- How could this bias your data? How can you reduce this bias?

- Incorporating externalities
- Spatial spillovers
- Are there any other relevant interventions going on at the same time?

- Are you planning on exploring equity issues
- What sub-groups will you look at?
- Potential behavioural responses to interventions (have they been identified and can they be measured)

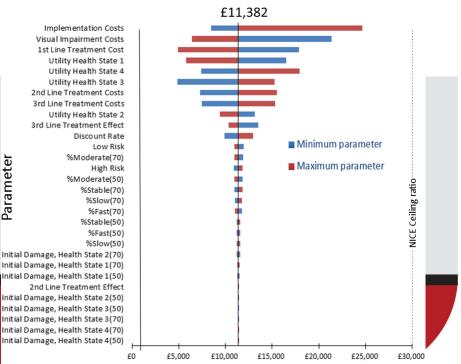
- Decide on an economic evaluation technique
- If using Cost utility analysis-can you map an intermediate outcomes to QALYs? (potentially using other data for utility values)
- Difficulty with unidimensional measures


- Costs (which perspective to take)
- Unit costs vs average unit cost of most frequently used service-justification of which costs are used and for what reason
- What to do if you don't have costs for a specific element

- Time Horizon
- Discount Rate

From: http://st udentaff airsass essmen t.org/en tries/blo g/logicmodels

- Choosing the right estimation model
- How can you account for variation in exposure to intervention in treatment group
- The methodology to reduce bias fits within economic evaluation frameworks
- Controls/Confounders (do you include-if so how do you decide what to control for)


- Uncertainty and sensitivity analysis
 - Probabilistic sensitivity analysis

Parameter

– Tornado Diagrams

From: Boodhna, T., & Crabb, D. P. (2016). More frequent, more costly? Health economic modelling aspects of monitoring glaucoma patients in England. BMC Health Services

Research, 16(1), 1-13.

- Report results from all model specification
- Sensitivity analysis

 Deidda, M., Geue, C., Kreif, N., Dundas, R., & McIntosh, E. (2019). A framework for conducting economic evaluations alongside natural experiments. *Social science & medicine*, *220*, 353-361.

• How to use econometrics for intervention development

Research question (Step 1)

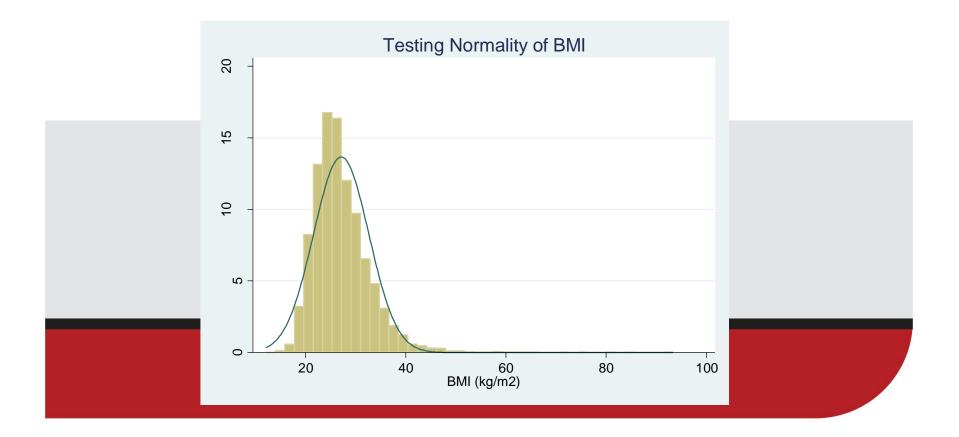
- Suppose you are asked what would be the best policy to prevent rising obesity rates.
- You have been tasked with investigating if any interventions can be developed in relation to schooling.
- You think that those with more education will be less likely to be obese.
- This is based on the Grossman model (Grossman 1972)

Estimation

- What model structure you use depends on your data and research question
- Some options are:
- 1. Ordinary Least Squares
 - Simplest basic forms can be done with pen and paper
- 2. Generalised Least Squares (Random Effects)
- 3. Fixed effects
- 4. Binary Probability Models (probit/logit)

- We are going to use data from waves 6-9 (2006-2009) of the Household Income and Labour Dynamics of Australia (HILDA) survey.
- It is a nationally representative survey of households in Australia which began in 2001.
- All household members over the age of 15 are interviewed on an annual basis.
- More information about the data can be found on: http://www.melbourneinstitute.com/hilda/

Descriptive Statistics (Step 3)



Variable	Obs	Mean	Std. Dev.	Min	Max
BMI2	22270	27.11	5.52	12.1	93.3
age	24987	44.65	11.06	25	65
female	24987	0.52	0.50	0	1
highschool	24877	0.12	0.33	0	1
cert1_2	24877	0.01	0.12	0	1
cert3_4	24877	0.23	0.42	0	1
diploma	24877	0.10	0.30	0	1
degree	24877	0.28	0.45	0	1
postgrad	24877	0.12	0.33	0	1
disadvanta~d	24984	0.27	0.44	0	1
loghhincome	24860	10.30	0.71	4.65	13.74
smokes	22914	0.21	0.41	0	1
frequent_pa	22985	0.50	0.50	0	1
married	24979	0.62	0.49	0	1
employed	24987	0.77	0.42	0	1
unemployed	24987	0.02	0.15	0	1

• Is the dependent variable normally distributed?

Testing for multicollinearity (Step 5)

	age	female	highsc~l	cert1_2	cert3_4	diploma	degree	postgrad
age		Show	vs correlation	n between ag	e and fema	le		
female	0.00	1						
highschool	-0.10	0.04	1					
cert1_2	0.02	0.02	-0.04	1				
cert3_4	-0.01	-0.18	-0.20	-0.06	1			
diploma	0.01	0.01	-0.13	-0.04	-0.18	1		
degree	-0.12	0.04	-0.23	-0.08	-0.34	-0.21	1	
postgrad	0.00	0.02	-0.14	-0.04	-0.20	-0.13	0.59	1
disadvanta~d	0.00	0.00	0.01	0.04	0.02	-0.05	-0.14	-0.11
loghhincome	-0.02	-0.06	-0.03	-0.05	-0.07	0.03	0.28	0.20
smokes	-0.11	-0.08	0.02	0.04	0.06	-0.03	-0.16	-0.11
frequent_pa	0.03	-0.05	-0.01	0.00	0.01	0.01	0.01	0.04
married	0.11	-0.02	-0.01	-0.01	-0.02	0.02	0.04	0.04
employed	-0.23	-0.18	0.00	-0.03	0.05	0.02	0.14	0.09
unemployed	-0.04	0.00	-0.01	0.03	0.01	0.01	-0.03	-0.03
	disadv~d	loghhi~e	smokes	freque~a	married	employed	unempl~d	
disadvanta~d	1							
	_		< Show	e corrolation	botwoon en	ooking status r	and log of hous	obold incom
loghhincome	-0.19	1		Sconelation	Detween Sh	ioning status a	and log of hous	
smokes	0.13	-0.10	1					
frequent_pa	-0.03	0.08	-0.04	1				
married	-0.11	-0.04	-0.21	-0.03	1			
employed	-0.12	0.33	-0.02	0.02	0.03	1		
unemployed	0.05	-0.10	0.06	0.00	-0.06	-0.27	1	

Choose a model specification (Step 6)

You start by deciding to estimate the following model:

 $BMI_{it} = \alpha + \beta_1 Individual_{it} + \beta_2 Household_{it} + \beta_3 Health_{it} + \beta_4 Education + \varepsilon_{it}$

 You estimate this model using Ordinary Least Squares

Ordinary Least Squares

- Zero mean value of ε : $E(\varepsilon | X_{1}, X_{2}, X_{3})=0$ Mean of the error term is equal to zero. Thus, it shouldn't affect your results.
- No serial correlation between error terms $cov(\varepsilon_i, \varepsilon_j)=0, i \neq j$

Error term from data collected this year is independent of the error term on data collected last year

• Homoscedasticity:

 $\operatorname{var}(Y_i) = \sigma^2$

The spread/variance of the dependent variable is the

same for all explanatory variables.

Ordinary Least Squares

• Zero covariance between ε_i and each X variable $\operatorname{cov}(\varepsilon_i, X_{2i}) = \operatorname{cov}(\varepsilon_i, X_{3i}) = 0$

There is no correlation between the error term and the explanatory variables

- The model is correctly specified
 Data does not violate the assumption of the model you choose
- No exact collinearity between the X variables
 Large correlation between two explanatory variables. If
 this happens you can't distinguish a separate effect of
 the variables on the dependent variable

Results (Step 7):

Source	SS	df	MS		Number of obs 7(15, 21905)		
Model Residual	31818.0987 633535.411		20658	R	Prob > F -squared Adj R-squared	= 0.0000 = 0.0478	P-value for whole equation
Total	665353.509	21920 30.35	537185		Root MSE	= 5.3779	Square root of residual of model (633535.411) divided
BMI2	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	by the degrees of freedom (15)
age	.037915	.0035642	10.64	0.000	.030929	.044901	
female	7239091	.0757189	-9.56	0.000	8723236	5754946	
highschool	7481159	.1309774	-5.71	0.000	-1.004841	4913908	
cert1_2	.2555938	.3203016	0.80	0.425	3722206	.8834081	
cert3_4	4657314	.1091737	-4.27	0.000	6797197	2517432	
diploma	6223796	.1369209	-4.55	0.000	8907545	3540047	
degree	-1.756052	.1244072	-14.12	0.000	-1.999899	-1.512205	
postgrad	.0304309	.1375061	0.22	0.825	239091	.2999528	
disadvantaged	.7144755	.0859732	8.31	0.000	.5459619	.8829891	
loghhincome	1135894	.0580152	-1.96	0.050	2273034	.0001247	
smokes	7047227	.0939824	-7.50	0.000	888935	5205103	
frequent_pa	-1.231265	.0731274	-16.84	0.000	-1.3746	-1.08793	
married	.0024257	.0781861	0.03	0.975	1508248	.1556762	
employed	0861931	1009191	-0.85	0.393	- 2840018	.1116157	
unemployed	0896252	.2708251	-0.33	0.741	620462	.4412117	
cons	28.35373	.6061855	46.77	0.000	27.16556	29.5419	

Testing for Homoskedasticity (Step 8)

Breusch-Pagan / Cook-Weis	berg test for heteroskedasticity
Ho: Constant var	iance
Variables: age f	emale highschool cert1_2 cert3_4 diploma degree postgrad
disad	vantaged loghhincome smokes frequent_pa married employed unemployed

chi2(15) = 1660.18 Prob > chi2 = 0.0000

- Reject null hypothesis of homoskedasticity
- OLS is not the most efficient model estimate
- Estimated standard errors are incorrect
- F-test is incorrect

Generalised Least Square (Step 6)

- When heteroskedasticity is present, generalised least squares will be a more efficient estimator than ordinary least squares.
 - The variance is re-written as: $var(\varepsilon_i) = \sigma_{\alpha}^2 + \sigma_{\varepsilon}^2$
- This is expressed in the error term of our BMI equation:

 $BMI_{it} = \alpha + \beta_1 Individual_{it} + \beta_2 Household_{it} + \beta_3 Health_{it} + \beta_4 Employment + \varepsilon_{it}$ $\varepsilon_{it} = \alpha_i + u_{it}$

Random-effects Group variable:		on Still assur	ne	Number o Number o	of obs = of groups =	21921 6583	
R-sq: within	= 0.0071	explanato	rv	Obs per	group: min =	1	
-	= 0.0396	variables			avg =	3.3	
	= 0.0388				max =	4	
	= 0 (assumed)	independe from the error term		Wald ch: Prob > c	i2(15) =	382.16 0.0000	 To rescale chi stat to F-stat rescale by degrees of freedom: 382.16/15=25.48.
BMI2	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]	
age	.0540196	.0053992	10.01	0.000	.0434374	.0646018	
female	5722987	.1286201	-4.45	0.000	8243895	320208	
highschool	6450872	.2043141	-3.16	0.002	-1.045536	2446388	
cert1_2	1050275	.3927257	-0.27	0.789	8747557	.6647007	
cert3_4	226809	.1601126	-1.42	0.157	5406239	.087006	
diploma	6483214	.2162746	-3.00	0.003	-1.072212	2244309	
degree	-1.508137	.1897108	-7.95	0.000	-1.879963	-1.13631	
postgrad	.0640852	.1910972	0.34	0.737	3104584	.4386289	
disadvantaged	.3279032	.0888517	3.69	0.000	.1537571	.5020492	
loghhincome	0030042	.0446496	-0.07	0.946	0905158	.0845075	
smokes	371592	.0891074	-4.17	0.000	5462392	1969448	
frequent_pa	4029532	.0448181	-8.99	0.000	4907952	3151113	
married	.151293	.0878546	1.72	0.085	0208989	.3234849	
employed	0740042	.0781782	-0.95	0.344	2272307	.0792224	
unemployed	1935166	.1451594	-1.33	0.182	4780238	.0909907	
	25.77389	.5304641	48.59	0.000	24.7342	26.81358	
sigma_u	4.9345746						m from this year
sigma_e	2.15289						ted with error
rho	.84009172	(fraction of	of varia	nce due t	to u_i)	term from	last year)
				for corial	correlation in		- /

Inter-class correlation allows for serial correlation in error term

Do we have our best model?

- Two restrictions for ordinary least squares were relaxed in the generalised least square model.
- 1. Homoskedasticity
- 2. Serial Correlation
- Still one important assumption which may be violated:
 - Explanatory variables are not correlated with the error term.
 - Not likely to be true.

Endogeneity

- Can lead to bias in the magnitude and significance of your estimated coefficients.
- Three main causes:
- 1. Direction of relationship does Y cause X or X cause Y?
- 2. Correlation of explanatory variables with the error term.
- Omitted variable bias Model is missing important variables for

explaining the dependent variable

What next then?

- Fixed effects models removes the bias from correlation of time constant unobserved characteristics.
- Captured by the term, α_i from the error term

heteroskedacitiy.

- This bias is removed by effectively taking the mean of all time varying explanatory variables.
- If a variable does not vary over time such as gender it is dropped from the model as the mean would be equal to zero.

Because mean of the female variable is zero

Results:

note: female omitted because of collinearity

Fixed-effects (within) regression	Number of obs	=	21921
Group variable: pid	Number of groups	=	6583
R-sq: within = 0.0131 between = 0.0122 overall = 0.0125		n = g = x =	1 3.3 4
corr(u_i, Xb) = -0.2315	F(14,15324) Prob > F	=	14.57 0.0000

BMI2	Coef.	Std. Err.	t	P> t	[95% Conf.	. Interval]
age	.1612163	.0141503	11.39	0.000	.1334801	.1889525
female	0	(omitted)				
highschool	2996822	.4873314	-0.61	0.539	-1.25491	.6555452
cert1_2	6568301	.5701257	-1.15	0.249	-1.774344	.460684
cert3_4	.1238858	.3332258	0.37	0.710	5292763	.777048
diploma	7507973	.5368784	-1.40	0.162	-1.803143	.3015482
degree	139501	.5260689	-0.27	0.791	-1.170658	.8916565
postgrad	.2201849	.3024856	0.73	0.467	3727229	.8130927
lisadvantaged	.07102	.108546	0.65	0.513	141743	.2837831
loghhincome	0134885	.0494524	-0.27	0.785	1104211	.0834441
smokes	2607477	.1046585	-2.49	0.013	4658909	0556045
frequent_pa	2834061	.0465141	-6.09	0.000	3745792	192233
married	.2074695	.114112	1.82	0.069	0162036	.4311426
employed	0673977	.0854415	-0.79	0.430	2348732	.1000777
unemployed	2287467	.1492554	-1.53	0.125	521305	.0638115
cons	20.21425	.7735044	26.13	0.000	18.69809	21.73041
sigma u	5.3729669					
sigma_e	2.15289					
_ rho	.86165903	(fraction	of varia	nce due t	oui)	

F test that all u_i=0: F(6582, 15324) = 18.53 Prob > F = 0.0000

Variable		Mean	Std. Dev.	Min	Max	Observations
200	overall	44.65	11.06	25	65	N = 24987
age		44.05		25		
	between		11.36			n = 6809
	within		1.08	43.15	40.15	T-bar = 3.6697
female	overall	0.52	0.50	0	1	N = 24987
	between		0.50	0	1	n = 6809
	within		0.00	0.52	0.52	T-bar = 3.6697
highsc~l	overall	0.12	0.33	0	1	N = 24877
0	between		0.32	0		n = 6777
	within		0.04			T-bar = 3.6708
cert1_2	overall	0.01	0.12	0	1	N = 24877
	between		0.11	0	1	n = 6777
	within		0.03	-0.74	0.76	T-bar = 3.6708
cert3_4	overall	0.23	0.42	0	1	N = 24877
	between		0.42	0	1	n= 6777
	within		0.07	-0.52	0.98	T-bar = 3.6708
diploma	overall	0.10	0.30	0	1	N = 24877
	between		0.30	0		n = 6777
	within		0.04	-0.65		T-bar = 3.6708
degree	overall	0.28	0.45	0	1	N = 24877
uegiee	between	0.28	0.43	0		n = 6777
	within		0.44			T-bar = 3.6708
	WILIIII		0.04	-0.47	1.05	1-Dai - 5.070d
postgrad	overall	0.12	0.33	0	1	N = 24877
	between		0.32	0	1	n = 6777
	within		0.05	-0.63	0.87	T-bar = 3.6708
loghhi~e	overall	10.30	0.71	4.65	13.74	N = 24860
-0 -	between		0.65	6.94		n = 6801
	within		0.32	6.10	13.43	T-bar = 3.6553
smokes	overall	0.21	0.41	0	1	N = 22914
	between		0.39	0		n = 6677
	within		0.14		0.96	T-bar = 3.4317
freque~a	overall	0.50	0.50	0	1	N = 22985
	between		0.40	0		n = 6682
	within		0.32	-0.25	1.25	T-bar = 3.43984
married	overall	0.62	0.49	0	1	N = 24979
	between		0.47			n = 6809
	within		0.13			T-bar = 3.6685

Looking at variations within variables

- Because there is not much change in the education variables over the 4 years data we have we can not be confident of our findings on these variables from the fixed effect model.
- We can be sure that we have:
- 1) Endogeneity bias
- 2) Heteroskedacitiy
- 3) Serial Correlation

- Instrumental Variable Approach
- Find a third variable that is correlated with education but independent of BMI.
- Estimate a proxy fixed effect model that only takes the mean of time varying variables.

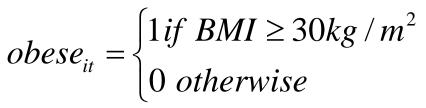
Steps 9 & 10

- Negative and significant effect found between BMI and having a degree which held across most model specifications.
- Before suggest an intervention further work is needed to confirm relationship and understand mechanisms.

Binary Response Regression Lancaster Models

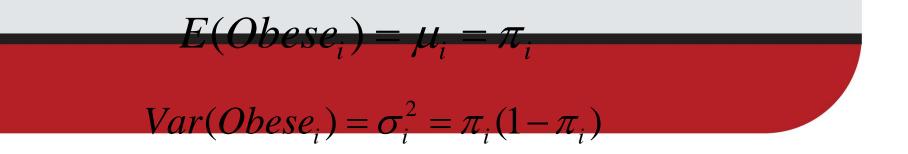
- Say you want to narrow the focus of your research question to the determinants of obesity only.
- You take your BMI data and construct a dummy variable for obesity using the WHO classification for obesity.

BMI between 18.5 kg/m²-24.9 kg/m² (healthy weight) BMI between 25 kg/m²-29.9 kg/m² (overweight)


BMI 30kg/m2 or greater (obese)

Summary of Obesity Variable

Variable	Obs	Mean	Std. Dev.	Min	Max	
obese	22270	.244185	.4296126	0	1	


Binary Response Regression Models

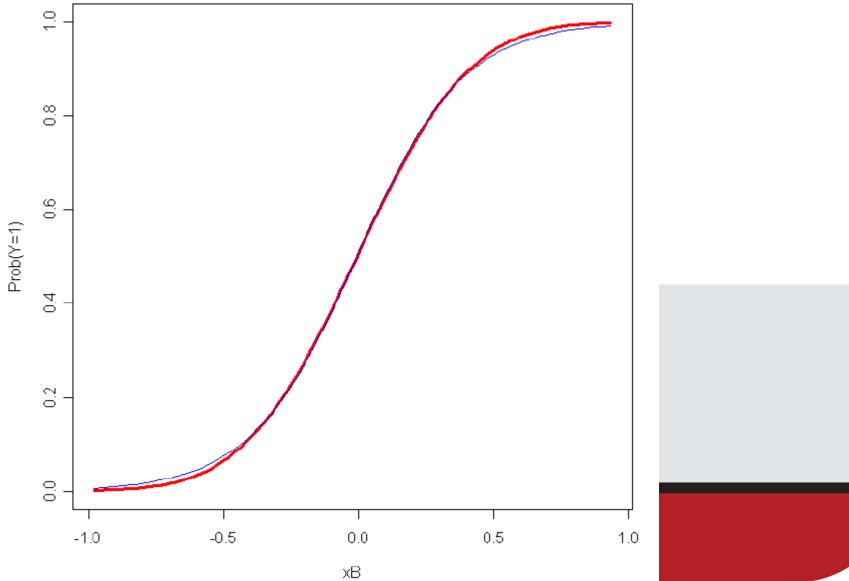
• $obese_{it}$ can take the values of one with the probability, π_i and zero with the probability $1-\pi_i$.

Lancaster University

• The expected mean and variance of $obese_{it}$ will depend upon the underlying probability, π_i

Binary Response Regression Models

- We violate a main assumption of linear models that explanatory variables can affect the mean but the variance is constant.
- We also need to control for the fact that the dependent variable is truncated between 0 and 1.
- We need a different type of model: Two most popular options are:
- 1. Probit



- Probit assumes a cumulative standard normal distribution function
- Logit assumes a cumulative logistical function.
- No statistical theory for preferring one over the other
- Results should be similar in a large sample

Predicted Probabilities from Logit (blue) and Probit (red)

- The coefficients from the two models are not directly comparable because they are scaled differently
- Signs and significance will be identical
- The probabilities are virtually the same
- Logit model has fatter tails

Probit Example

								*
	Random-effects	probit regres	ssion		Number c	of obs =	21921	
	Group variable:	pid			Number c	of groups =	6583	
	Random effects	u_i ~ Gaussia	an		Obs per	group: min =	1	
					C. d	avg =	3.3	
		Snows of	verall signif	icance of	t the mo	max =	4	
		K			Wald chi		313.64	
	Log likelihood	= -7268.969			Prob > c	:hi2 =	0.0000	
	obese	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]	
	age	.0232403	.003872	6.00	0.000	.0156514	.0308293	
	female	1.45e-06	.0861945	0.00	1.000	1689367	.1689396	
	highschool	6569157	.1461271	-4.50	0.000	9433195	3705119	
	cert1 2	1855968	.329245	-0.56	0.573	8309052	.4597116	
	cert3 4	3244582	.1215997	-2.67	0.008	5627892	0861272	
	diploma	6828981	.1535792	-4.45	0.000	9839077	3818884	
	degree	-1.413866	.1394861	-10.14	0.000	-1.687253	-1.140478	
	postgrad	.3196227	.1462485	2.19	0.029	.032981	.6062644	
	disadvantaged	.3416478	.0835444	4.09	0.000	.1779037	.5053919	
	loghhincome	0504026	.0461164	-1.09	0.274	1407891	.0399839	
	smokes	3971027	.0872327	-4.55	0.000	5680756	2261297	
	frequent_pa	4156364	.0506979	-8.20	0.000	5150024	3162703	
	married	.0042537	.0783037	0.05	0.957	1492187	.1577261	
	employed	2607877	.0833602	-3.13	0.002	4241707	0974046	
Pane	unemployed	0058434	.1611285	-0.04	0.971	3216495	.3099627	
level		-2.783088	.5078715	-5.48	0.000	-3.778497	-1.787678	Test of it should control for a (rendem
varia	ince							Test of if should control for α _i (random
, and	/lnsig2u	2.845583	.0411215			2.764986	2.92618	effects ₎
Stand	ard -> sigma u	4.148685	.0853001			3.984824	4.319285	
Devia		.9450899	.002134			.9407542	.9491255	
	(Likelihood-rati	o test of rho	p=0: <u>chibar</u> 2	2(01) =	9004.64 F	rob >= chibar	2 = 0.000	K

Average Marginal Effects

 Estimated by calculating individual marginal effects-likelihood of moving from not obese to obese for a one unit change in the explanatory variable in question (estimated for all explanatory variables in the model:

($\partial obese_{it} / \partial X_{it}$)

- To get average marginal effects, individual marginal effects for all respondents in the sample are averaged.
- This shows the average likelihood of being obese for each explanatory variable

Average Marginal Effects

- For dummy variables, the average marginal effects are calculated by predicting the probability that the dummy variable in question is equal to one and the probability that the dummy variable is equal to zero. The difference between these two probabilities is then averaged across the whole sample.
- For continuous variables, the average marginal effects are estimated by taking the derivative of the predicted probability of the variable in question and averaging across the whole

sample.

Average Marginal Effects

Average marginal effects Model VCE : OIM

Expression : Linear prediction, predict()

dy/dx w.r.t. : age _Ifemale_1 _Ihighschoo_1 _Icert1_2_1 _Icert3_4_1 _Idiploma_1 _Idegree_1
 __Ipostgrad_1 _Idisadvant_1 loghhincome _Ismokes_1 _Ifrequent__1 _Imarried_1
 __Iemployed_1 _Iunemploye_1

	dy/dx	Delta-method Std. Err.	z	P> z	[95% Conf.	Interval]		
age	.0232403	.003872	6.00	0.000	.0156514	.0308293		
_Ifemale_1 _Ihighschoo_1	1.45e-06 6569157	.0861945 .1461271	0.00 -4.50	1.000 0.000	1689367 9433195	.1689396 3705119	,	Problem with model.
_Icert1_2_1	1855968	.329245	-0.56	0.573	8309052	.4597116		Marginal effects shouldr
_Icert3_4_1 Idiploma 1	3244582 6828981	.1215997 .1535792	-2.67 -4.45	0.008 0.000	5627892 9839077	0861272 3818884		be greater than 1. Most likely endogeneity
Idegree_1	-1.413866	.1394861	-10.14	0.000	-1.687253	-1.140478		problem.
_Ipostgrad_1	.3196227 .3416478	.1462485 .0835444	2.19 4.09	0.029	.032981 .1779037	.6062644 .5053919		
_Idisadvant_1 loghhincome	0504026	.0833444	4.09 -1.09	0.000 0.274	1407891	.0399839		
_Ismokes_1	3971027	.0872327	-4.55	0.000	5680756	2261297		
_Ifrequent1	4156364	.0506979	-8.20	0.000	5150024	3162703		
_Imarried_1 Iemployed 1	.0042537 2607877	.0783037 .0833602	0.05 -3.13	0.957	1492187 4241707	.1577261		
Iunemploye1	0058434	.1611285	-0.04	0.971	3216495	.3099627		

Number of obs =

21921

Logit Example

Random effects u_i ~ Gaussian	Obs per group: n	min =	1
	ć	avg =	3.3
	r	max =	4
	Wald chi2(15)	=	273.34
Log likelihood = -7264.386	Prob > chi2	=	0.0000

obese	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
age	.0413757	.0073358	5.64	0.000	.0269977	.0557536
female	0079491	.1685725	-0.05	0.962	3383451	.3224469
highschool	-1.164756	.2831441	-4.11	0.000	-1.719708	6098041
cert1 2	3648273	.6302735	-0.58	0.563	-1.600141	.870486
cert3 4	5707002	.2342793	-2.44	0.015	-1.029879	1115211
diploma	-1.205491	.3012874	-4.00	0.000	-1.796004	6149789
degree	-2.533389	.2708517	-9.35	0.000	-3.064249	-2.002529
postgrad	.6075568	.2832631	2.14	0.032	.0523713	1.162742
disadvantaged	.6053279	.1583307	3.82	0.000	.2950054	.9156504
loghhincome	0825726	.0848651	-0.97	0.331	2489051	.0837599
smokes	7515844	.1653225	-4.55	0.000	-1.075611	4275582
frequent_pa	755414	.0928977	-8.13	0.000	9374901	5733378
married	.0193703	.1489499	0.13	0.897	2725661	.3113067
employed	4732393	.1533456	-3.09	0.002	7737911	1726876
unemployed	0192225	.2899264	-0.07	0.947	5874678	.5490227
_ ^{cons}	-5.162994	.9423629	-5.48	0.000	-7.009992	-3.315997

	4.05162	.0420026	3.969297	4.133944
sigma_u	7.582251	.1592371	7.276488	7.900862
rho	.9458729	.0021504	.9415001	.9499362
lihood-rati	o test of rho	o=0: chibar2(0)	1) = 9011.46 Prob >= chibar	2 = 0.000

Logit Example (Odds ratio)

Random-effects Group variable:		ression		Number of Number of		21921 6583
Random effects	u_i ~ Gaussia	in		Obs per o	group: min = avg = max =	1 3.3 4
og likelihood	= -7264.386	Odds-r	atio	Wald chi2 Prob > cł		273.34 0.0000
obese	OR	Std. Err.	Z	₽> z	[95% Conf.	Interval]
age female	1.042244 .9920824	.0076457 .1672378	5.64 -0.05	0.000 0.962	1.027365 .7129492	1.057337 1.380502
highschool cert1 2	.3119987 .6943166	.0883406 .4376093	-4.11 -0.58	0.000 0.563	.1791184 .2018681	.5434573
cert3_4 diploma degree	.5651296 .2995448 .0793895	.1323982 .0902491 .0215028	-2.44 -4.00 -9.35	0.015 0.000 0.000	.3570501 .1659608 .0466889	.8944725 .5406523 .1349934
postgrad isadvantaged	1.83594 1.831853	.5200542	2.14 3.82	0.032	1.053767 1.343134	3.198693 2.4984
loghhincome smokes frequent pa	.9207446 .4716187 .4698161	.0781391 .0779692 .0436448	-0.97 -4.55 -8.13	0.331 0.000 0.000	.779654 .3410894 .3916095	1.087368 .6520994 .563641
married employed unemployed	1.019559 .6229809 .980961	.1518632 .0955314 .2844065	0.13 -3.09 -0.07	0.897 0.002 0.947	.7614231 .4612611 .5557327	1.365208 .8414004 1.73156
_cons	.0057245	.2844065	-5.48	0.947	.0009028	.0362978
/lnsig2u	4.05162	.0420026			3.969297	4.133944
sigma_u rho	7.582251 .9458729	.1592371 .0021504			7.276488 .9415001	7.900862
ikelihood-rati	o test of rho	=0: <u>chibar2</u>	(01) =	9011.46 Pi	rob >= chibar	2 = 0.000

Comparing logit and probit coefficients

besse Coef. Coef. ge 0.02 0.0 lfemale_1 0.00 -0.0 lhighschoo_1 -0.66 -1.1 lcert1_2_1 -0.19 -0.3 lcert3_4_1 -0.32 -0.5 ldiploma_1 -0.68 -1.2 ldegree_1 -1.41 -2.5 lpostgrad_1 0.32 0.6 ldisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 lsmokes_11 -0.40 -0.7 Imarried_11 0.00 0.6 lemployed_1 -0.26 -0.4 unemploye_1 -0.01 -0.0				
ge 0.02 0.0 lfemale_1 0.00 -0.0 lhighschoo_1 -0.66 -1.1 lcert1_2_1 -0.19 -0.3 lcert3_4_1 -0.32 -0.5 ldiploma_1 -0.68 -1.2 ldegree_1 -1.41 -2.5 lpostgrad_1 0.32 0.6 ldisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 lsmokes_1 -0.40 -0.7 Imarried_1 0.00 0.6 lemployed_1 -0.26 -0.4 lunemploye_1 -0.01 -0.0			Probit	Logit
Ifemale_1 0.00 -0.0 Ihighschoo_1 -0.66 -1.1 Icert1_2_1 -0.19 -0.3 Icert3_4_1 -0.32 -0.5 Idiploma_1 -0.68 -1.2 Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Imarried_1 0.00 0.6 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	obese		Coef.	Coef.
Ifemale_1 0.00 -0.0 Ihighschoo_1 -0.66 -1.1 Icert1_2_1 -0.19 -0.3 Icert3_4_1 -0.32 -0.5 Idiploma_1 -0.68 -1.2 Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Imarried_1 0.00 0.6 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0				
Ihighschoo_1 -0.66 -1.1 Icert1_2_1 -0.19 -0.3 Icert3_4_1 -0.32 -0.5 Idiploma_1 -0.68 -1.2 Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Imarried_1 0.00 0.6 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	age		0.02	0.04
Icert1_2_1 -0.19 -0.3 Icert3_4_1 -0.32 -0.5 Idiploma_1 -0.68 -1.2 Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Imarried_1 0.00 0.0 Iunemploye_1 -0.01 -0.0	_Ifemale_	_1	0.00	-0.01
Icert3_4_1 -0.32 -0.5 Idiploma_1 -0.68 -1.2 Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Ifrequent_1 0.000 0.0 Imarried_1 0.000 0.0 Iunemploye_1 -0.01 -0.0	_Ihighsch	1_100	-0.66	-1.16
Idiploma_1 -0.68 -1.2 Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Ifrequent_1 -0.42 -0.7 Imarried_1 0.00 0.6 Iunemploye_1 -0.01 -0.0	_lcert1_2	2_1	-0.19	-0.36
Idegree_1 -1.41 -2.5 Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Ifrequent_1 -0.42 -0.7 Imarried_1 0.00 0.6 Iunemploye_1 -0.26 -0.4	_lcert3_4	↓_ 1	-0.32	-0.57
Ipostgrad_1 0.32 0.6 Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Ifrequent_1 -0.42 -0.7 Imarried_1 0.00 0.0 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	_Idiploma	a_1	-0.68	-1.21
Idisadvant_1 0.34 0.6 oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Ifrequent_1 -0.42 -0.7 Imarried_1 0.00 0.0 Iemployed_1 -0.26 -0.4	_Idegree	_1	-1.41	-2.53
oghhincome -0.05 -0.0 Ismokes_1 -0.40 -0.7 Ifrequent_1 -0.42 -0.7 Imarried_1 0.00 0.0 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	_lpostgra	id_1	0.32	0.61
Ismokes_1 -0.40 -0.7 Ifrequent_1 -0.42 -0.7 Imarried_1 0.00 0.0 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	_Idisadva	ant_1	0.34	0.61
Ifrequent1 -0.42 -0.7 Imarried_1 0.00 0.0 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	loghhinco	ome	-0.05	-0.08
Imarried_1 0.00 0.0 Iemployed_1 -0.26 -0.4 Iunemploye_1 -0.01 -0.0	_lsmokes	s_1	-0.40	-0.75
lemployed_1 -0.26 -0.4 lunemploye_1 -0.01 -0.0	_lfrequer	nt1	-0.42	-0.76
Iunemploye_1 -0.01 -0.0	Imarried	_1	0.00	0.02
	_lemploy	ed_1	-0.26	-0.47
-2 78 5 1	_lunempl	oye_1	-0.01	-0.02
	_cons		-2.78	-5.16

Decompositons

- If you have potential pathways that you think may explain observed composition
- Three main ways to implement:
- 1) Oaxaca Blinder
- 2) KHB
- 3) nldecompose

Oaxaca method

Study distributional differences between two groups

$$\ln \bar{W}_{M} - \ln \bar{W}_{N} = \hat{\kappa}_{M}, \hat{\gamma}_{M}, \hat{\xi}_{M}, \hat{\psi}_{M} \left(\bar{X}_{M} - \bar{X}_{N}, \bar{H}_{M} - \bar{H}_{N}, \bar{L}_{M} - \bar{L}_{N}, \bar{B}_{M} - \bar{B}_{N} \right)$$

$$+ \bar{X}_{N}, \bar{H}_{N}, \bar{L}_{N}, \bar{B}_{N} \left(\hat{\kappa}_{M} - \hat{\kappa}_{N}, \hat{\gamma}_{M} - \hat{\gamma}_{N}, \hat{\xi}_{M} - \hat{\xi}_{N}, \hat{\psi}_{M} - \hat{\psi}_{N} \right),$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$(5)$$

$$($$

KHB Method

- Addresses problem caused by the need for rescaling or attenuation bias in non-linear models
- Used to explain how a mediator (pathway) variable Z explains the relationship between X and a latent outcome variable Y

KHB Method

- Over comes the scaling problem by taking out of Z the information that is not in X by calculating the residuals of a linear regression of Z on X.
- R is the used instead of Z in a reduced form model following a similar format to the standard Oaxaca linear decomposition

Nldecompose

- Similar idea to overcome scaling problem for non-linear models
- More flexible than khb method can be used with ordered logit and probit

References

- Sinning, M., Hahn, M., & Bauer, T. K. (2008). The Blinder–Oaxaca decomposition for nonlinear regression models. *The Stata Journal*, 8(4), 480-492.
- Kohler, U., & Karlson, K. (2010). KHB: Stata module to decompose total effects into direct and indirect via KHBmethod.
- Brown, H. (2011). Marriage, BMI, and wages: A double selection approach. *Scottish Journal of Political Economy*, *58*(3), 347-377.