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Motivation

Motivation

I Viruses are a major threat to human health.

I Despite successes of vaccination campaigns, many viruses are still
very prevalent.

I Limited scope for public policy other than vaccination campaigns:
since (at least) medieval times, consists of preventing inter-personal
contacts and movements.

I We know surprisingly little about the determinants of how viruses
spread.

I We still do not know much about public health policies to limit
contacts and whether they are worth it.

I Short-run vs long-run measures.
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Motivation
I Viruses are a major threat to human health.

I Viruses have been present
for up to 80 million years.
Afflict humans at least since
prehistoric times. Early
recordings of poliomyelitis in
1400BC Egypt.

I Since the XXth century,
smallpox killed 300 million
people, influenza about 100
million, HIV about 30
million, Covid-19 about 2/3
million.

I New viruses or mutated
forms arise frequently (West
Nile, Ebola, SARS...).

Trends in Emerging

Infectious Diseases

Source: Jones et al (2008), Nature
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Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:

I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:

I number of cases and deaths.
I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?
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I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
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the increase.
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I There are more outcomes than we anticipated at first:

I number of cases and deaths.
I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:
I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:

I number of cases and deaths.
I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:
I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:
I number of cases and deaths.

I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:
I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:
I number of cases and deaths.
I economic outcomes.

I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:
I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:
I number of cases and deaths.
I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:
I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:
I number of cases and deaths.
I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

Lessons from COVID

I Mainstream economists have learned all about SIR models in record
time.

I Analysis and forecasting are more an art than a science:
I especially when the quality of the data is dubious.
I especially when the data are scarce.
I little exogenous variation in policy measures.
I and when individuals take their own decisions.

I There are more outcomes than we anticipated at first:
I number of cases and deaths.
I economic outcomes.
I individual behavior, mental health, political issues...

I How do we weight all these outcomes to determine how effective
measures are? We need to get past simple reduced-form analysis.

I Can we learn from the pre-COVID past?

3 / 35



Motivation

I Talk based on
I J Adda (2016), ”Economic Activity and the Spread of Viral Diseases:

Evidence from High Frequency Data” Quarterly Journal of Economics,
131 (2): 891-941.

I J Adda, R Bouccekine, J Thuilliez (2021) ”An Economic
-Epidemiological Model of Diseases”.

I My own reading of the overwhelming literature on Covid.
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Motivation

Plan of talk

Motivation

Model and Analysis of Diseases
Standard Epidemiological Model
Econometric model
Econometric Issues
Spatial Effects
Example

Cost effectiveness

Taking into account Behavior

Conclusion
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Model and Analysis of Diseases Standard Epidemiological Model

Standard Inflammatory Response model
I Standard model in epidemiology. Dates back to Kermack and

McKendrick (1927). Three types of individuals:
I Susceptible to contract the disease, S
I Infected individuals, I
I Individuals who have recovered and are immune, R

S + I + R = 1

I Dynamic of infection:

dI
dt = αSI − βI

dR
dt = βI − δR

dS
dt = −αSI + δR

I β−1 is the average infectious period. Disease specific constant.
I α captures the rate at which individuals become infected. May vary

both in short and long run.
6 / 35



Model and Analysis of Diseases Standard Epidemiological Model

Determinants of infection rates

The coefficient α may depend on:
I in the short-run:

I Policy measures preventing contact between individuals (school or firm
closures, travel restrictions)

I Economic fluctuations.
I Weather

I in the long-run:
I Medical progress (new vaccines).
I Infrastructure, in particular transportation.
I Population structure, population density, migration patterns.
I Economic growth, trade.
I Changes in work-practices.

I These effects may differ within and across regions or countries.
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Model and Analysis of Diseases Econometric model

Econometric model

I Let Irt denote the incidence rate of a particular virus in region r ,
r = 1, . . . ,R.

I Let Srt−τ be the proportion of susceptible individuals

I τ represents the incubation time.

Irt = αIrt−τSrt−τ + Xrtδ + ηrt

I The shock ηt is potentially serially and spatially correlated.
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Model and Analysis of Diseases Econometric Issues

Event Analysis

I Event analysis is a popular method for assessing the effect of a policy.

I In the context of infectious diseases, the model is

Irt = λr + λt +
∑
k=0

βk IPolr ,t−k + (αIrt−τSrt−τ + ηrt)︸ ︷︷ ︸
urt

I Consistency requires that cov(IPolr ,t−k , urt) = 0.

I In other words, the policy cannot be initiated because authorities see
an unexpected rise in infections. In major epidemics, this assumption
is never holding.
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Model and Analysis of Diseases Econometric Issues

Estimated model

I We allow for measurement error: Ĩrt = Irt + εrt

I Define Lrt = Irt . ∗ Srt

Ĩrt = αL̃rt−1 + Xrtδ + urt

with

urt = ηrt + εrt − αεrt−1(Srt−1 +
∑
j

εrt−j)− βεrt−1 + αĨrt−1

∑
j

εrt−j

I The error term is potentially correlated with the right-hand side
variables. cov(L̃t−1, ut) 6= 0.

I OLS would yield biased coefficients. Difficult to evaluate policy
measures.
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Model and Analysis of Diseases Spatial Effects

Spatial Econometric model
Within and Between Region Spread

I Let Irt denote the incidence rate of a particular virus in region r ,
r = 1, . . . ,R.

I Let Srt−τ be the proportion of susceptible individuals

Irt = αwithinIrt−τSrt−τ + αbetween

∑
c∈R\r

Ict−τSrt−τ + Xrtδ + ηrt

I The model can be made more complex by allowing different
transmissions rate across areas.
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Model and Analysis of Diseases Example

Example: Viral Diseases in France

I Weekly infection rates, between 1984 and 2009.

I By age group: children, adults and elderly.

I For all of the 21 regions in France.
I Data on three major viral diseases:

I Flu-like illnesses (influenza).
I Acute diarrhea (gastro-enteritis).
I Chickenpox (varicella).

I Source: ”Réseaux Sentinelles”, a network of about 1,200 French GPs,
gathering data across all of France, based on diagnostic at their
surgery or at the patient’s home.
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Model and Analysis of Diseases Example

Infection rates over time
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Model and Analysis of Diseases Example

School holidays

I School holidays, by region, 1984-2009:

I Set nationally, for all schools.

I Usually 4 two-week holidays per
year, and one summer break
(about 8 weeks).

I Exact timing varies across years
and regions, especially for winter
and spring breaks.

I Independent variation,
conditional on year, week and
region dummies.
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Model and Analysis of Diseases Example

Event Analysis: Flu-like Illnesses, School Closure
Children, Adults and Elderly
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Model and Analysis of Diseases Example

Event Analysis: Acute Diarrhea, School Closure
Children, Adults and Elderly
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Model and Analysis of Diseases Example

Transportation strikes

I Record of all transportation strikes over the period 1984-2009.

I Collected from the main press.

I National and local strikes, which lasts for more than 2 days.

I Over the period, between 18-28 weeks of strikes per region (out of
1280 weeks).
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Model and Analysis of Diseases Example

Event Analysis: Flu-like Illnesses, Transportation Strikes
Children, Adults and Elderly
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Model and Analysis of Diseases Example

Event Analysis: Accute Diarrhea, Transportation Strikes
Children, Adults and Elderly
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Model and Analysis of Diseases Example

Baseline results: OLS and IV

Flu-like illness
Children Adults Elderly

(1) (2) (3)

Panel A: OLS estimates, within region transmission only
Within region (αwithin) 0.280∗∗∗ 0.455∗∗∗ 0.120∗∗∗

Panel B: OLS estimates, within and between region transmission
Within region (αwithin) 0.243∗∗∗ 0.412∗∗∗ 0.103∗∗∗

(0.008) (0.008) (0.004)
Between region (αbetween) 0.005∗∗∗ 0.006∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.000)

Panel C: IV estimates, within and between region transmission
Within region (αwithin) 0.205∗∗ 0.290∗∗∗ 0.111∗∗∗

Between region (αbetween) 0.012∗∗∗ 0.016∗∗∗ 0.005∗∗∗

Observations 25,005 25,005 25,005
Autocorrelation (AR1) 0.34 0.17 0.37
F test (endogeneity) 4.430 10.730 9.690
P-value 0.109 0.005 0.008
Note: ***, ** and * denotes significance at 1%, 5%, and 10% level. All regressions include region, year and week fixed effects. Time is expressed in years minus 1984. IV

regressions using lagged temperature and precipitation as instruments. Standard errors are corrected for serial and spatial correlation, using a a Prais-Winsten regression,

where a region specific AR(1) process is assumed.
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Model and Analysis of Diseases Example
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Model and Analysis of Diseases Example

Baseline results: OLS and IV
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Note: ***, ** and * denotes significance at 1%, 5%, and 10% level. All regressions include region, year and week fixed effects. Time is expressed in years minus 1984. IV

regressions using lagged temperature and precipitation as instruments. Standard errors are corrected for serial and spatial correlation, using a a Prais-Winsten regression,

where a region specific AR(1) process is assumed.
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Model and Analysis of Diseases Example

Spatial Econometric model
Within and Between Region Spread with social determinants

I Complete model where the transmission rate is time-varying and
region-specific.

I Within regions: we denote a set of K region-specific variables W k
rt .

I Includes school closure and transportation closures indicators, the
effect of temperature and weather, population density, measures of
economic activity...

I Between regions: we denote a set of K region-specific variables W̃ k
rct .

inter-regional trade, distance between regions (defined as the distance
between the most populous cities in each region), population ratios,
log regional GDP ratios, and temperature differences.

Irt = Irt−τSrt−τ

K∑
k=1

αk
withinW

k
rt−τ

+
∑

c∈R\r

Ict−τSrt−τ

K̃∑
k=1

αk
betweenW̃

k
rct−τ + Xrtδ + ηrt
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Model and Analysis of Diseases Example

Determinants of spread

I We collect data on a number of potential additional determinants:
I Weather (temperature and rainfall), by region and week. (European

Climate Assessment & Dataset)
I Large popular gatherings.
I Expansion of the high-speed rail network.
I Regional trade patterns. (INSEE).
I Regional GDP and unemployment rates (INSEE).
I Population density by region and year (INSEE).
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Model and Analysis of Diseases Example

High-speed rail transportation
I France has one of the most developed rail system.
I Starting in the early 1980s many high-speed routes were built.
I Usually cuts down journey times by about a factor 3.
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Model and Analysis of Diseases Example

Propagation rate of viruses: Fully interacted model
Flu-like illness Acute diarrhea Chickenpox

Children Adults Elderly Children Adults Elderly Children
(1) (2) (3) (4) (5) (6) (7)

Panel A. Interpersonal contacts

School holiday, within -.145∗∗∗ -.101∗∗∗ -.006 -.071∗∗∗ 0.014 0.01∗∗∗ -.197∗∗

(0.019) (0.019) (0.008) (0.009) (0.013) (0.004) (0.078)

School holiday, between -.003∗∗∗ -.0009 0.0001 0.003∗∗∗ -.004∗∗∗ -.0007∗∗∗ 0.005
(0.0007) (0.0008) (0.0003) (0.0007) (0.0008) (0.0003) (0.004)

Transportation strike, within -.002 -.056∗∗ -.036∗∗∗ 0.038 0.016 0.017 -.060
(0.026) (0.024) (0.011) (0.026) (0.039) (0.012) (0.154)

Transportation strike, between -.008∗∗ -.010∗∗∗ -.004∗ -.002 -.003 -.001 0.009
(0.004) (0.004) (0.002) (0.003) (0.003) (0.001) (0.013)

High-speed train 0.005∗∗ 0.014∗∗∗ 0.007∗∗∗ 0.01∗∗∗ 0.006∗∗∗ 0.0008 0.001
(0.003) (0.002) (0.001) (0.002) (0.002) (0.0006) (0.016)

Adverse weather, within -.050∗∗∗ -.035∗∗ 0.008 -.033∗∗∗ -.006 -.0002 -.019
(0.015) (0.016) (0.006) (0.008) (0.01) (0.003) (0.087)

Panel B: Trade
Within region 0.078 -.092 0.008 -1.669 -1.381∗ -.159

(0.088) (0.075) (0.036) (4.315) (0.714) (0.81)

Between regions 0.035∗∗∗ 0.049∗∗∗ 0.009∗∗ 0.018∗∗∗ 0.029∗∗∗ 0.002 0.026
(0.008) (0.007) (0.004) (0.006) (0.007) (0.002) (0.029)

Panel C: Unemployment

Within region -.012∗∗ -.008 0.002 0.005 -.014∗∗∗ -.001 0.004
(0.005) (0.005) (0.003) (0.003) (0.004) (0.001) (0.02)

Between regions -.014∗∗∗ 0.006∗ 0.009∗∗∗ 0.01∗∗∗ 0.005 -.002∗∗ 0.018
(0.003) (0.003) (0.002) (0.003) (0.004) (0.001) (0.02)

Table continued on next page.
Note: ***, ** and * denotes significance at 1%, 5%, and 10% level. All regressions include region, year and week fixed effects. IV regressions using lagged temperature

and precipitation as instruments. Standard errors are corrected for serial and spatial correlation, using a a Prais-Winsten regression, where a region specific AR(1) process

is assumed. The model also includes school holidays, transportation strikes, popular gatherings, quarterly dummies and linear trend interacted with the transmission rates,

which are not displayed.
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Model and Analysis of Diseases Example

Propagation rate of viruses: Fully interacted model

Flu-like illness Acute diarrhea Chickenpox
Children Adults Elderly Children Adults Elderly Children

(1) (2) (3) (4) (5) (6) (7)
Panel D. Within region characteristics

Temperature (in C) -.016∗∗∗ -.027∗∗∗ -.004∗∗∗ -.005∗∗∗ -.005∗∗∗ -.0004 -.004
(0.002) (0.002) (0.0009) (0.0009) (0.001) (0.0003) (0.006)

Population density 1.173∗∗∗ 0.701∗∗∗ -.252∗∗ 0.407∗∗∗ -.164 -.170∗∗∗ 4.440∗∗

(0.176) (0.178) (0.123) (0.118) (0.157) (0.055) (1.762)

Panel E. Between region characteristics

Distance (1000km) 0.0008 0.005 0.004∗ -.004 -.011∗∗∗ -.005∗∗∗ 0.019
(0.003) (0.003) (0.002) (0.002) (0.003) (0.001) (0.09)

Population ratio 0.002∗∗ -.0002 0.0009∗∗ 0.005∗∗∗ 0.01∗∗∗ 0.002∗∗∗ 0.025∗∗∗

(0.001) (0.001) (0.0004) (0.001) (0.001) (0.0004) (0.006)

Log GDP ratio -.009 0.018∗∗ -.0007 -.0001 0.066∗∗∗ 0.018∗∗∗ -.051
(0.01) (0.009) (0.004) (0.008) (0.009) (0.003) (0.042)

Temperature Difference (in C) 0.0002∗ 0.0009∗∗∗ 0.0002∗∗∗ 0.0001 0.0006∗∗∗ 0.0002∗∗∗ 0.002∗∗

(0.0001) (0.0001) (0.00006) (0.0001) (0.0001) (0.00003) (0.0007)

Prevalence in Paris 0.046∗∗∗ 0.043∗∗∗ 0.011∗∗∗ -.007∗∗ -.003 0.003∗∗ 0.023
(0.006) (0.006) (0.003) (0.003) (0.004) (0.001) (0.016)

Observations 24,407 24,407 24,407 18,537 18,537 18,537 17,602
R-squared 0.57 0.73 0.37 0.54 0.67 0.27 0.24
Note: ***, ** and * denotes significance at 1%, 5%, and 10% level. All regressions include region, year and week fixed effects. IV regressions using lagged temperature

and precipitation as instruments. Standard errors are corrected for serial and spatial correlation, using a a Prais-Winsten regression, where a region specific AR(1) process

is assumed. The model also includes school holidays, transportation strikes, popular gatherings, quarterly dummies and linear trend interacted with the transmission rates,

which are not displayed.
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Cost effectiveness

Are these policies worth it?

I We evaluate the potential benefits of closing down schools and public
transportation.

I We take from the literature accepted costs of sickness. These include:

I cost of treatment and GP visit.
I cost of complications and hospitalization.
I cost of early death.
I loss of human capital away from school.
I loss of productivity.

I We simulate the policy for every possible week during the year.

28 / 35



Cost effectiveness

Costs of disease (influenza)
Children

GP visit (32% chance) 6.68 e
Otitis media (0.28% chance) 17.38 e
Pneumonia (12% chance) 16.45 e
Hospitalisation (0.07% chance) 2.45 e
Hospitalisation (sequelae pneumonia 0.7 per 100,000) 3.61 e
Loss of human capital (3 days off school, 5% return) 99 e
Parent stays home (50% of time, labor market particip. 0.65) 102 e
Value of statistical life 1.3-6 million e
Probability of death 0.7 per 100,000
Cost of death 9-42 e

Adults

Absent from work (2 days of work at average wage) 78.90e
Reduced productivity (0.7 days at 50%) 13.80 e
GP visit (45% chance) 9.45 e
Hospitalisation (0.04% chance) 1.80 e
Probability of death 4 per 100,000
Cost of death 52-240 e

Elderly

Outpatient visit 217 e
Hospital 476 e
Probability of death 102 per 100,000
Cost of death 1326-6120 e
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Cost effectiveness

Costs of policy

School closure

10 days off school, 5% return 350 e
Parent stays home (50% of time, labor market particip. 0.65) 150 e

Public transportation closure

e400 million per day for 7 days 19 e
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Cost effectiveness

Overall cost of Policy
Flu-like Illness. Euros pc

Week of extra school closure
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Week of transportation closure
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Taking into account Behavior

An Economic-Epidemiological Model of Diseases
Joint with Raouf Boucekkine and Josselin Thuilliez

I The SIR model ignores how individuals react to policies and disease
prevalence.

I In fact, individual decision plays a crucial role: how much to distance
socially.

I Decisions may depend:
I on beliefs about the effectiveness of measures.
I on how much time the measures are supposed to last.
I on how long they have been in place.
I on severity of enforcement of policies.
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Taking into account Behavior

An Economic-Epidemiological Model of Diseases
Joint with Raouf Boucekkine and Josselin Thuilliez

I We develop a model where
I Population is heterogenous
I Individuals learn about the epidemic and update their beliefs.
I Individuals decide about how much to move around and mingle with

others.
I Choices are made conditional on their beliefs and policies in place.
I Policies consist of

I distance limits
I duration of lockdown
I economic compensations
I fines if policies are not respected.

I Individual behavioural mobility responses are incorporated into a SIR
model with endogenous contact rates.
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Taking into account Behavior

An Economic-Epidemiological Model of Diseases
Joint with Raouf Boucekkine and Josselin Thuilliez

I Model is calibrated on French data using:
I Infection and hospitalisation rates,
I Mobility data at a local level from mobile phone positions,
I Data on anti-depressant drugs.
I Changes in policies.

I Allow to better take into account the epidemic, and in particular its
long-run effect.

I More complex setting for the evaluation of cost-effective measures.
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Conclusion

Conclusion and further research

I Many pitfalls in evaluating policy measures in the context of
epidemics. Difficult exercise.

I Cross-disciplinary issue.

I Given the urgency, immediate focus is on short-term measures.

I Scope for longer term considerations as well: role of infrastructures,
role for health related human capital.

I How to make our societies more resilient to diseases?
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