## Care transformations needed: an international policy perspective

Helsinki, August 29th 2024

Prof. dr. Patrick Jeurissen

## About me

- Prof. Health systems and finance, Radboud University Medical School & Global lead health policy, Royal Philips
- Side functions: Supervisory board Dutch guarantee fund healthcare, Associate editor Health Policy, Chair selection committee Dutch Harkness fellow Commonwealth Fund
- Team lead strategy and science officer Ministry of Health (2010-2016)
- International consultancies: OECD, EU, WHO, ADB, Finland, Austria, Switzerland, Cyprus, Aruba, Georgia, Armenia, South-Korea
- Academic: 100+ peer reviewed papers, co-authored 5 books
- Topics: political economy of health system (reform), healthcare finance, comparative health systems, for-profit delivery models, hospitals, mental health, administrative expenses, multimorbidity, tertiary care
- Education: public policy and health economics (Msc. and Ph.D)



## Main messages

- Care transformation is urgent (top-3 topic): costs, worker shortages, environmental pressure, planetary health etc.
- Mechanisms successful policy: increase high value care, reduce low value care & reduce price.
- Substantial barriers: persistent system varieties and resistance through a political economy of healthcare.
- Higher labor productivity prerequisite to solve increasing labor shortages
- Better embeddedness diagnostic systems in broader health systems to gain more appropriate care
- Governance challenge: 'ending' incremental adjustments by explicit policy choices

## Agenda





## 1. Waves of Health System Reform



## From waves of health system reform towards transformation of care

|                   | Goal                                                   | Policy instruments                                                                                                                                                                             |
|-------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ( <b>1</b> ) 1945 | Universal coverage and equal access                    | NHS, (social) insurance                                                                                                                                                                        |
| ( <b>2</b> ) 1970 | Controls, rationing and expenditure caps               | certificate-of-need (capital investments),<br>global budgets, prospective payment (drg's)                                                                                                      |
| ( <b>3</b> ) 1990 | Incentives and competition                             | managed/regulated competition, privatization, active purchasing                                                                                                                                |
| ( <b>4</b> ) 2010 | Nudging professionals to<br>'appropriate' care (NCD's) | EBM, guidelines, prevention, AI, high value<br>care, digital, alternative payment models,<br>inte <u>l</u> ligence (self-management & monitoring)<br>and (timely) diagnostics, choosing wisely |

Source (1) - (2) - (3): Cutler, 2002, Journal of Economic Literature

## Netherlands: 3rd (competition) to 4<sup>th</sup> (care transformation) wave



Overspending, underspending on global budget

#### Fiscal Policies (2012):

- Ending insurer risk equalization and underwriting
- Sectoral covenants with fiscal ceiling
- Increasing deductible

## But: trade-off with access / quality-of-care exists

#### 4<sup>th</sup> wave: Integral covenant appropriate care

- (2022) • value-based, shared decision making, rightcare-at-the-right-place, prevention, worker satisfaction
- 2.8 billion euro transition fund

Source: MoH (personal communication).

Source, Jeurissen and Maarse, 2021

## 2. In need for care transformation (financial perspective)

JAMA | Special Communication

### Health Care Spending in the United States and Other High-Income Countries

Irene Papanicolas, PhD; Liana R. Woskie, MSc; Ashish K. Jha, MD, MPH

**IMPORTANCE** Health care spending in the United States is a major concern and is higher than in other high-income countries, but there is little evidence that efforts to reform US health care delivery have had a meaningful influence on controlling health care spending and costs.

## Major cost-drivers in need for solutions

- Labor: long-term care
- Multi-morbidities (NCDs): (exponential) growth
- Increasing complexity & fragmentation: administrative burden
- Tertiary care: big hospitals, expensive pharmaceuticals
- Safety: complications major surgeries
- Additional technologies (few substitutions)
- Policy: unanticipated effects increase costs

#### Cost of institutional LTC (65+ with severe needs), as share median income, 2022



### Growing expenses (% GDP) Medical equipment (% GDP)

0.9



0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1970 1975 1980 1985 1995 2000 2005 2010 2015 2020 2025 1990

Canada - Hospitals - Machinery and equipment
 Canada - Total - Machinery and equipment
 United States - Total - Machinery and equipment
 Sweden - Hospitals - Machinery and equipment
 Korea - Total - Machinery and equipment
 Sweden - Total - Machinery and equipment

- United Kingdom - Total - Machinery and equipment

#### Source: OECD, 2024

### **Ancillary services (% GDP)**

### **Pharmaceuticals (% GDP)**



- Korea Anciliary services (non-specified by function)
- Netherlands Ancillary services (non-specified by function)
- Canada Ancillary services (non-specified by function) Japan Ancillary services (non-specified by function)
- United Kingdom Ancillary services (non-specified by function)
- Germany Ancillary services (non-specified by function) Italy Ancillary services (non-specified by function)
- France Ancillary services (non-specified by function) Sweden Ancillary services (non-specified by function)
- Poland Ancillary services (non-specified by function) Brazil Ancillary services (non-specified by function)





- United States Pharmaceuticals and other medical non-durable goods
- Korea Pharmaceuticals and other medical non-durable goods
- Canada Pharmaceuticals and other medical non-durable goods
- Germany Pharmaceuticals and other medical non-durable goods

### **Multimorbidity: increasing burden and expensive**



co-morbidities, main Dutch insurer (2012)

Average per capita costs per enrolee versus #

Source: Wammes, Jeurissen, 2014

Model outcomes for care use (quarter) in CORE-clinic for HNHC patients (red line) and actual averages per quarter (blue line)

![](_page_11_Figure_5.jpeg)

Source: Remers, Jeurissen et al, 2024, Journal of evaluation of clinical practice

### Administrative burden: another main cost driver

#### Hospital overhead expenses

|             | Core   | Total  | % GDP |
|-------------|--------|--------|-------|
| US          | 15.51% | 25.32% | 1.43  |
| Netherlands | 10.85% | 19.79% | 0.77  |
| Canada      | 7.40%  | 12.42% | 0.41  |
| France      | 8.77%  | n/a    | n/a   |
| Germany     | 9.00%  | n/a    | n/a   |
| England     | n/a    | 15.45% | n/a   |
| Scotland    | n/a    | 11.59% | 0.51  |
| Wales       | n/a    | 14.27% | 0.66  |

![](_page_12_Figure_3.jpeg)

Source: Himmelstein et al, Health Affairs, 2012

Addressing determinants: 1. reducing complexities, 2. harmonization, 3. data interoperability

### **Technologies: substitution or add-on**

![](_page_13_Figure_1.jpeg)

Minimal invasive increases faster dan decline of

- (New) technologies cheaper, but add to volume. Will newest technologies be different (micro-electronics, AI etc.)?
- FAME 3 Rct (2021): 3-year cumulative costs three vessel disease, PCI (\$ 24,063) versus CABG (\$ 35,714)
- Real-world savings: addressing expensive hospital infrastructures, operation room, EMR, ICU – is paramount
- Some no brainers: AMR prevention, generics/refurbished, primary care, kidney transplants etc.

### Unanticipated policy effect appropriate care: cost-shifting

### and silo's hamper savings effective dementia networks

| Type of admission                                                                                                                                                                              | Risk for intervention<br>compared to control<br>(confidence interval) | p-value | Cost category                                                                                                                                                 | Change per year for<br>intervention compared to<br>control (95% CI) | p-<br>value |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|
| Hospital admission <sup>2</sup><br>(n = 37,205)                                                                                                                                                | OR 0·83 (0·67 – 1·03)                                                 | 0.096   | Total healthcare costs <sup>1</sup><br>(n= 9,378)                                                                                                             | -€1,925 (-€5,592 – €1,742)                                          | 0.303       |
| Intensive care unit (ICU)<br>admission <sup>2</sup><br>(n = 37,205)                                                                                                                            | OR 0·59 (0·34 – 1·01)                                                 | 0.055   | Total curative care costs <sup>2</sup><br>(n = 38,525)                                                                                                        | - 3.0 % (+8.2% – -13.0%)                                            | 0.58        |
| Emergency department (ED) visit <sup>2</sup><br>(n = 37,205)                                                                                                                                   | OR 0·88 (0·72 – 1.08)                                                 | 0.234   | Hospital care costs <sup>2</sup><br>(n = 37,205)                                                                                                              | - 19.7 % (-7.6 – -30.3%)                                            | < 0.01      |
| Odds of increased Length of Stay<br>(by one day) <sup>3</sup><br>(n = 17,798)                                                                                                                  | OR 0·88 (0·77 – 0·96)                                                 | < 0.01  | Primary care costs <sup>2</sup><br>(n = 38,267)                                                                                                               | + 10·2 % (+2·3% – +18·6%)                                           | 0.010       |
| Primary care emergency<br>admissions <sup>2</sup><br>(n=28,792)                                                                                                                                | OR 0·75 (0·43 – 1·32)                                                 | 0.320   | District nursing care costs <sup>2</sup><br>(n = 28,792)                                                                                                      | + 0·10 % (-14·7% – +18·5%)                                          | 0.949       |
| Admission to nursing home<br>setting <sup>4</sup><br>(n = 9.677)                                                                                                                               | OR 0·96 (0·80 – 1·15)                                                 | 0.656   | Pharmaceutical costs <sup>2</sup><br>(n= 37,751)                                                                                                              | - 4·1 % (-11·7% – +4·1%)                                            | 0.318       |
| <ul> <li><sup>1</sup>: Mixed effects linear regression models</li> <li><sup>2</sup>: Mixed effects logistic regression model with binary distribution</li> </ul>                               |                                                                       |         | Long-term care costs (n=<br>9,677)                                                                                                                            | +€502 (-€3,191 – €4,195)                                            | 0.789       |
| (yes/no)<br><sup>3</sup> : Mixed effects logistic regression model with Poisson distribution<br>(inpatient days)<br><sup>4</sup> : Logistic regression model with binary distribution (yes/no) |                                                                       |         | <ul> <li><sup>1</sup>: Curative and long-term care combined</li> <li><sup>2</sup>: Log-transformed outcome variable because of skewed distribution</li> </ul> |                                                                     |             |

## Unanticipated policy effect finance: reimbursement does not equal actual costs (endemic cross-subsidies)

![](_page_15_Figure_1.jpeg)

## Unanticipated policy effects incentives: outcome payments (>10%): mixed results

|                     | Quality | Costs | # Studies | D&B score |  |
|---------------------|---------|-------|-----------|-----------|--|
| Bonus penalty groep |         |       |           |           |  |
| CQUIN (UK)          | +       | ?     | 3         | 9,0       |  |
| HQID                | mixed   | -     | 13        | 11,4      |  |
| HRRP                | +       | ?     | 2         | 9,0       |  |
| Hudson Plan         | mixed   | -     | 2         | 13,0      |  |
| Maryland            | +       | ?     | 1         | 10,0      |  |
| PAMC P4P            | -       | ?     | 2         | 10,5      |  |
| QOF (UK)            | +       | -     | 43        | 11,9      |  |
| VBP                 | -       | ?     | 3         | 12,0      |  |
| VIP (K)             | +       | ?     | 3         | 12,0      |  |
| ACO                 |         |       |           |           |  |
| AQC                 | +       | +     | 10        | 12,4      |  |
| MSSP                | +       | +     | 2         | 11,0      |  |
| Pioneer ACO         | +       | +     | 2         | 11,0      |  |

Source: Vlaanderen, Jeurissen, 2019, European Journal of Health Economics

- Limited indicators: cholesterol, HbA1C, blood pressure, albumine, lithium, mortality, readmissions, complications / infections
- Process indicators improve more than outcome indicators
- ACO improvements more resistant; B/P: ceiling effect.
- B/P: negative effects non-incentivized indicators
- Private- and low performing providers show most improvement
- Complex patients do not improve more than other groups
- ACO cost savings increase: less EMR, outpatient care and extensive treatments, <u>diagnostics</u>; no savings on pharmaceuticals and mental health.
- B/P: bonus increases costs.

## Unanticipated policy effects: no specific health inflation indicator and adjustments; hospitals vary in inflation susceptibility depending on cost structure (2021-2023)

![](_page_17_Figure_1.jpeg)

Inflation increases the spread in projected cost growth, most notably in specialized facilities (ITCs)

Source: Jeurissen et al, 2024, OBS Policy Brief 65

3. Persistent varieties health systems (complex adaptivity, path dependency)

![](_page_18_Picture_1.jpeg)

## Limited variety families of health systems

| Type of system | Examples                                                        | Characteristics                                                                                                                                                                                                                                                                                                                                                                              |  |
|----------------|-----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Beveridge      | UK                                                              | State budgets – through central and targeted taxes – largely finance health system; strong role for the state and its agencies in planning health care; citizens have full access to health care                                                                                                                                                                                             |  |
| Bismarck       | Germany                                                         | Financed largely through compulsory contributions from<br>employees, employers and state subsidies, health care system<br>managed by institutions that are largely independent of<br>government; health risks are pooled over populations based<br>on principle of social solidarity                                                                                                         |  |
| Private        | United States                                                   | Market-based system with heavy role for the private sector;<br>costs of care largely covered by insurance or out-of-pocket<br>spending except for some targeted groups (eg, older people)                                                                                                                                                                                                    |  |
| Semashko       | The then Soviet Union<br>and some Eastern<br>European countries | Centralised model based on a single-payer system with very<br>high level of state control over planning and operation of health<br>care services; free access to a wide range of services funded<br>through national state budget; large role for multi-specialty<br>primary care providers; health care facilities are owned by the<br>state and clinical professionals are state employees |  |

Source: Adapted from Smółka (2022)

## Substantial variety most other indicators. Example avoidable mortality (per 100.000)

![](_page_20_Figure_1.jpeg)

- Families of health systems cannot explain actual varieties on the ground.
- Substantial varieties persist on HSPA indicators (health, clinical, resources, etc.)
- Even if policies converge (prospective reimbursement, competition etc.)
- Country-specific approaches often required

## Substantial variety inpatient/outpatient distribution (EU)

![](_page_21_Figure_1.jpeg)

## Substantial variety ambulatory surgeries

![](_page_22_Figure_1.jpeg)

Source: Kreutzberg A, et al, 2024

## Substantial variety high prevalence treatments (Netherlands versus 15 European countries)

![](_page_23_Figure_1.jpeg)

### Substantial variety in MR exams (per 1.000)

![](_page_24_Figure_1.jpeg)

## 4. Political economy: balancing a) strong values with b) high costs and c) vested interests

![](_page_25_Picture_1.jpeg)

### **Voter perceptions on health systems: antagonism**

![](_page_26_Figure_1.jpeg)

## The political economy of health care

- *Voters prioritize health:* high willingness to pay
- *Increasing costs* of additional health gains: flat-of-the-curve medicine (Cutler, 2006)
- *Fat tails increase transfers by net-payers*: top 1% HNHC-patients (multimorbidity)
- Universal access for HNHC-patients implies *public regulation and funding*
- Health spend increases more rapidly than GDP: <u>decreases level of total public fiscal</u> <u>space (MoF)</u>
- Fierce *competition with other public expenses*
- Substantial part health expenses: <u>'waste' or of 'no-value'</u> (OECD, 2017: 20%)
- <u>Politicians prefer painless cost-control</u>: more efficiency, <u>presumes transformation</u>

**Preferable solution** 

**Political problem** 

**Muddling through** 

- <u>High barriers towards change</u>: vested interests, citizen/patients, conservative care practices
- Policy-making skewed to <u>'softer' approaches</u> with <u>substantial agency autonomy</u>

Source: Jeurissen, 2016/2018/2021

## 5. Enabler: higher labour productivity

## **Common trends high-income countries**

- Worker shortages: highly skilled nursing and assistance (190.000 in the Netherlands in 2033); informal care under pressure
- Workload and higher sickness rates (3-4%) than in other parts of economy leads to high job outflow rates
- Waiting lists tend/threaten to increase
- Increasing complexities: hospital may shoulder 30+ medical specialities, 300+ subspecialities, and 2500+ diagnoses
- Increasing compliance: administrative duties as high as 35-40%
- Dealing with breakthrough technologies: micro-electronics, sensors, AI etc.
- Implementation <u>has to</u> increase labour productivity, but require different knowledge, skills, and trust: smart monitors, implants, robots, protheses, diagnostics, wearables, sensors, voice recognition and HER and better decision support systems

## Increasing waiting lists: canary in the coal mine?

#### Patients (%) who exceed waiting-time threshold (Netherlands)

![](_page_30_Figure_2.jpeg)

## 6. Enabler: stronger diagnostic systems

## **Stronger diagnostic systems**

- Diagnostics fundamental to quality and appropriate care (high value)
- Diagnostic errors: 6%-17% hospital adverse events (US, 2015)
- Low policy priority (Lancet), WHO resolution essential diagnostics (2023!?)
- Capital budgets more volatile
- Rapidly changing provider landscape (centralized labs, POC) & low value diagnostics do exist.

#### Adequate diagnostics bear high value

![](_page_32_Figure_7.jpeg)

Source: Lancet Commission on diagnostics, 2021

![](_page_32_Picture_9.jpeg)

"This brilliantly researched, well-argued, and clearly written book will help us avoid the unnecessary tests, drugs, surgeries, and anxiety that are the inevitable outcome of our epidemic of overdiagnosis," — SIDNEY WOLFE, MD, author of *Wast Plits*, Best Plits and editor of WastPlits.org

![](_page_32_Picture_11.jpeg)

# 7. Explicit policy choices for a new equilibrium and real transformation of care

![](_page_33_Picture_1.jpeg)

## Theoretical focus points for policy choices

![](_page_34_Figure_1.jpeg)

## Incrementalism or substantial policy change (punctuated equilibrium)?

#### Annual changes US federal spending 1948 – 2000 (budget categories)

![](_page_35_Figure_2.jpeg)

Source: Baumgartner et al, 2009

- Policymaking is overwhelmingly incremental
- Sometimes deviations come up: punctuated equilibria (PE)
- PE is validated theory <u>about</u> (budgetary) policy changes
- More about issue-definition early on (thought leadership) than changing institutional procedures. Example: personal budgets (UK, Netherlands)
- Very effective (new) disruptive technologies may create a PE (Christensen)

## Why explicit policy choices?

- Care changes fundamentally (transformation): breakthrough technologies (AI, micro, sensor etc.) AND worker shortages, aging, limited resources
- Potential disruptive on current healthcare landscape
- During rapid flux, incremental policy making underpins consensus, but typically comes with substantial transaction costs
- Because of rapid aging and worsening public finances high transaction costs (the unanticipated policy effects) may be a problem. Align policies and 'doing everything' to create leverage and new equilibrium
- One fundamental question is the future of the community hospital and the nursing home. How to spend capital budgets?
- Three key topics: 1) which expensive tertiary care/technologies, 2) lower administrative expenses, and 3) connected care comorbidities
- Workable mechanism: professionals should be re-empowered and have better assistance from new technologies and improved work flow streams

## **Receptivity fundamental policy change**

![](_page_37_Figure_1.jpeg)

## Main messages

- Care transformation is urgent (top-3 topic): costs, worker shortages, environmental pressure etc.
- Mechanisms successful policy: increase high value care, reduce low value care & reduce price.
- Substantial barriers: persistent system varieties and resistance through a political economy of healthcare.
- Higher labor productivity prerequisite to solve increasing labor shortages
- Better embeddedness diagnostic systems in broader health systems to gain more appropriate care
- Governance challenge: 'ending' incremental adjustments by explicit policy choices

## Thank you for your attention!

#### Questions and comments: patrick.jeurissen@radboudumc.nl

![](_page_39_Figure_2.jpeg)

#### an e na se para narrez gar penser enge

![](_page_39_Figure_4.jpeg)

![](_page_39_Figure_5.jpeg)

### **Resilience overlaps existing HSPA frameworks**

#### Covid excess mortality correlates with less health workforce

![](_page_40_Figure_2.jpeg)

Notes: The quadrant chart shows the association between the health and social care workforce and excess mortality. The x-axis shows how much a country is above or below the OECD average for total health and social employment in 2019 (per 1000 population); the y-axis shows a country's distance from the OECD average excess mortality rate for 2020–2021. Note that this analysis does not adjust for other factors, nor does it necessarily infer causality.

#### How to be prepared?

- Risk analysis / scenario forecasts
- Training for the unforeseen
- Excellent capital infrastructure (excess capacity)
- Well-trained and motivated workforce
- Get your (excess) inputs right

![](_page_40_Figure_10.jpeg)

### Seventy-one policy strategies to contain <u>health system</u> costs (1970 – 2018): limited success and limited evidence

![](_page_41_Figure_1.jpeg)

Mediane zorgkosten laatste 30 dagen leven: transmurale palliatieve zorg (n=210) versus matched controle groep

![](_page_42_Figure_1.jpeg)

## Weinig verschuivingen marktaandeel zorgaanbieders

![](_page_43_Figure_1.jpeg)

## Betere kwaliteit zorg leidt vaak niet tot meer marktaandeel (ziekenhuizen)

| Relation between quality and market share reallocations (hospitals)           |                         |                          |  |
|-------------------------------------------------------------------------------|-------------------------|--------------------------|--|
|                                                                               | Static allocation (CSE) | Dynamic allocation (CSE) |  |
| HSMR                                                                          | 0.0048 (0.0046)         | 0.0001 (0.0002)          |  |
| Hospitals                                                                     | 65 (N=224)              | 65 (N=224)               |  |
| Outcome indicators z-score                                                    | -0.9239 (0.3921)        | 0.0176 (0.0111)          |  |
| Hospitals                                                                     | 128 (N=731)             | 125 (N=715)              |  |
| Process of care z-scores                                                      | -0.0861 (0.246)         | 0.0031 (0.0037)          |  |
| Hospitals                                                                     | 189 (N=970)             | 178 (N=921)              |  |
| Structural quality z-scores                                                   | 1.8907*** (0.3493)      | -0.0449*** (0.0069)      |  |
| Hospitals                                                                     | 209 (N=1034)            | 192 (N=970)              |  |
| Note: clustered standard errors are in parentheses; sign. *<5%;**<1%;***<0.1% |                         |                          |  |

## Huisarts als spil in netwerk?

**Figure 4.1.** The number of hours per FTE spent on working as a GP based on the SMS measurements, per type of activity by employment position and gender<sup>1, 2, 3</sup>

![](_page_45_Figure_2.jpeg)

 $^{1}$  N = 61,320 measurements, 1,095 SMS weeks of measurement, 1,051 GPs. The sum of the hours per type of activity could deviate from the total hours as a result of rounding up or down. The results are weighted on the bases of population numbers by employment position, gender and age.  $^{2}$  Based on the average FTE GPs indicated in the survey prior to the weeks of measurement.  $^{3}$  M=male, F=female, T=total. **Figure 4.2.** The percentage of the working hours spent on working as a GP based on the SMS measurements, per type of activity by employment position and gender<sup>1, 2</sup>

![](_page_45_Figure_5.jpeg)

 $^{1}$  N = 61,320 measurements, 1,095 SMS weeks of measurement, 1,051 GPs. The sum of the percentages per type of activity could deviate from the total hours as a result of rounding up or down. The results are weighted on the bases of population numbers by employment position, gender and age.

<sup>2</sup> M=male, F=female, T=total.

Source: Van Hassel D, Working hours of general practitioners, 2020

## **Climate change**

![](_page_46_Figure_1.jpeg)

#### Relatieve overlijdensrisico's (RR) bij verschillende temperaturen en leeftijdsklassen in Nederland

![](_page_46_Figure_3.jpeg)