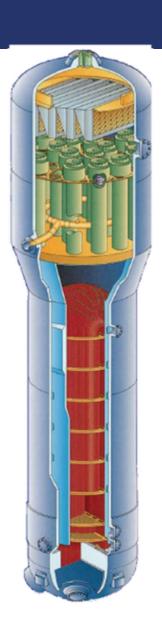


WEF-19-ASCA-GENE-NTD-4203 R01

### PWR Steam Generator Secondary Maintenance Strategy


Geoffroy GAILLARD – EMEA Steam Generator Solutions Manager Westinghouse Electrique France

SYP, October 30th 2019

#### TABLE OF CONTENTS

- 1. Background
- 2. Introduction / Industry Challenge
- 3. Current Maintenance Model:
  - Inspection model
  - Cleaning model
  - Results
  - Why?
- 4. New Maintenance Strategy:
  - Main principles and Challenges
  - Inspection model
  - Cleaning model
  - Fast Chemical Cleaning
- 5. Conclusion

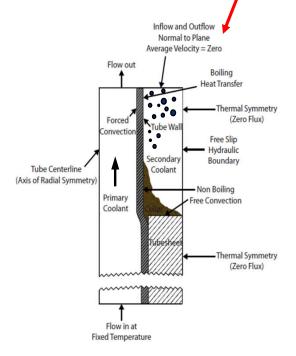


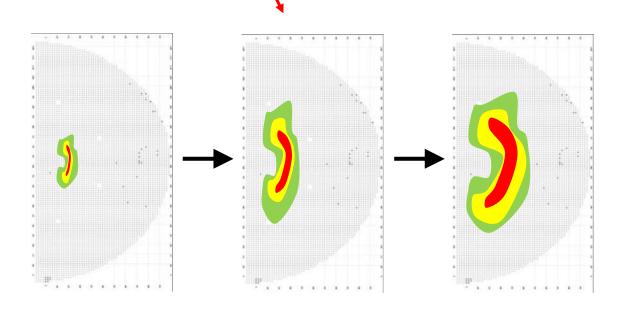


### Background: Deposits

- Deposits at the top of the tubesheet?
  - Fouling
  - Hard collars
  - Copper






### Background: Hard Collar

- TTS "kidney" zone "Conventional Hard collar area"
- TTS collars:
  - Intergranular Attack / Stress corrosion cracking (IGA/SCC)









#### Introduction

Current TTS maintenance strategies are based on focusing primarily **on fouling and hard collars only on "kidney zone".** 

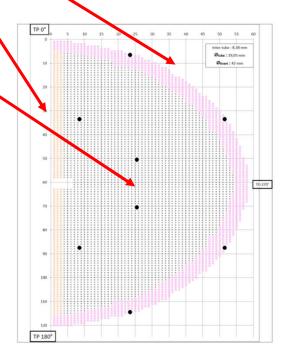
However, this model could be questioned as, despite the implementation of the qualified preventive technics, Lesson Learned on several European utilities shows that it could lead to **deficient results with IGA/SCC/denting phenomena.** 

The industry challenge is to have a more predictive maintenance strategy / Long Term Operation Strategy.



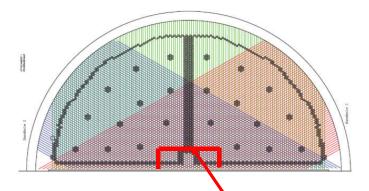
### Current Maintenance model and technologies: overall

- Only lancing technologies are used as TTS cleanliness technologies,
- Same cleaning and inspection program is applied whatever the SG cleanliness,
- Some utilities initiated to adapt the cleaning program in the kidney zone.




# Current Maintenance model and technologies: Inspection Model

- EC inspection from primary side,
- Visual inspection from secondary side:
  - Systematic no tube inspection,
  - Systematic 100% or fixed (in-bundle tubesheet inspection)








# Current Maintenance model and technologies: Cleaning Model

Systematic Conventional lancing to extract Fouling,



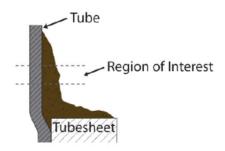
- Systematic Reinforced lancing to stop/decrease the kidney zone on the full kidney area,
- Systematic/Case by case High pressure lancing to stop/decrease the kidney zone.



### Current Maintenance model and technologies: Result

This current strategy leads to some case with ISA/SCC phenomena with no other solutions than:

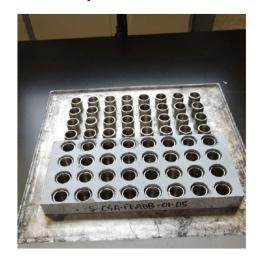
EPRI SGOG chemical cleaning:

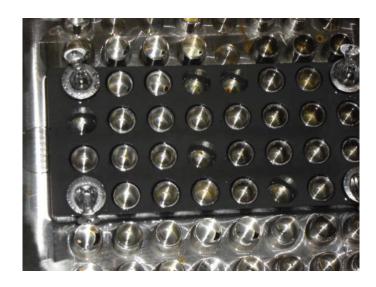



Continuous High Pressure lancing campaigns.



# Current Maintenance model and technologies: Why so much difficulties?

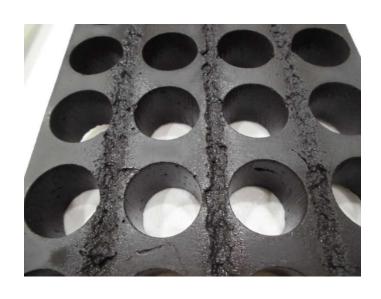

- Challenge of caracterizing hard collar deposits:
  - Main parameters: hardness and Compressive strenght,
  - High Amplitud on these main parameters:
    - local hardness measurements : 100 Hv 2000 Hv,
    - Compressive strenght: 100-300 MPa
  - Heterogeneous material: mix of iron oxides, metal ferrites, and other metals and metal oxides (Al, Si, nickel, manganese, magnesium, lead. (Pb).
  - There was no correlation between the collar hardness and the radial distance from the steam generator tube.

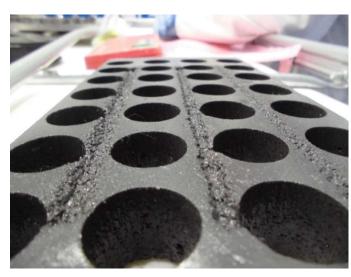





# Current Maintenance model and technologies: Why so much difficulties?

- Lot of influent parameters for efficient sludge lancing:
  - jet pressure,
  - nozzle offset distance,
  - jet impingement angle,
  - nozzle diameter,
  - jet traverse speed on sludge disruption,
  - Get access to deposits






# Current Maintenance model and technologies: Why so much difficulties?

 High and very specific operative conditions are required to succeed in laboratory for more challenged cases





Test 5 P: 8700 psi (600 bar) Offset: 10 mm offset Jet Incidence: 90° Nozzle Dia.: 1.02 mm



# of Passes: 9
Equiv. Traverse Rate: 59 mm/min
Damage Width: 20.6 mm
Damage Depth: 22.1 mm
% Thru Thickness: 100%



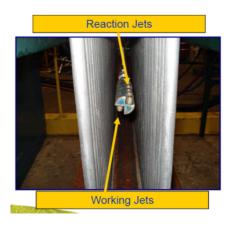
### New Approach: Main principles and Challenges

- Preventive rather than Curative by actionning not only on the « kidney » zone but also and the TTS hard collar creation,
- « No more than Necesary » by decreasing, cancelling the poor added value technologies,
- Program adapted to the SG cleanliness situation,
- Results from Asia (systematic chemical cleaning),
- Limit pressure impact in tubes not to damage them (risks with high pressure lancing),
- Action even in « shadow » area,
- No schedule/Cost impact.



### New Maintenance Strategy: Inspection model

- EC inspection from primary side,
- Visual inspection from secondary side:
  - Systematic no tube inspection for FME reasons,
  - Sampling in-bundle tubesheet inspection to evaluate hard sludge evolution.




|            | Before     | After          | Comments      |
|------------|------------|----------------|---------------|
| No tube    |            |                |               |
| inspection | Systematic | Systematic     | FME reasons   |
|            | 100% or    | Sampling based |               |
| In-bundle  | fixed      | on last SG     | could lead to |
| inspection | program    | inspection     | optimization  |



### New Maintenance Strategy: Cleaning model

- Evolutive Conventional Lancing program based on SG cleanliness status to extract Fouling,
- Evolutive Reinforced lancing to stop/decrease the kidney zone only on zone with collar,
- Recurrent chemical cleanings each 3-5 outages before lancing not only for kidney zone but also for TTS collar to eliminate IGA/SCC risk,
- Stop high pressure lancing.





|               | Before        | After                   | Comments      |
|---------------|---------------|-------------------------|---------------|
|               |               | Evolutive based on      |               |
| Conventional  | Fixed         | past outage quantity    | could lead to |
| lancing       | program       | of extracted sludge     | optimization  |
|               | Fixed or      |                         |               |
| Reinforced    | evolutive     | Evolutive based on last | could lead to |
| lancing       | program       | inspection              | optimization  |
| High Pressure |               |                         |               |
| lancing /     |               | Each 3-5 outages        |               |
| Chemical      | Systematic/Ca | based on deposit        |               |
| Cleaning      | se by case    | progress                | no impact     |

#### New Maintenance Strategy: Fast Chemical Cleaning

- Chemical Process with prove efficiency,
- Very low level of corrosion (<15 μm),</li>
- Low environmental impact (low quantity of waste and gaseous emission),
- Very limited footprint (2\*20' containers outside containment),
- Short schedule: 30h max on SG (rather than high pressure lancing),
- Plant heat to be used during the chemical process,
- Injecting/draining by plant pipes,
- Collaborative needed utilities/vendor on local regulation, plant configuration, waste management.
- -> Overcome challenge: have a efficient technology for hard collar without impacting outage schedule.



#### Conclusion

Based on this maintenance strategy model on PWR steam generator secondary, the recommendation shall lead to:

- Challenge old practises,
- Maximize/improve the steam generator performance without affecting the outage schedule,
- Executing maintenance for Long-Term Operation success.

This industry Challenge could be overcome with full collaboration/transparency between utilities and maintenance service vendors.

Thank you for your attention!



