
Simultaneous Reconstruction of
Emission and Attenuation in

Passive Gamma Emission Tomography
of Spent Nuclear Fuel

Samuli Siltanen

Department of Mathematics and Statistics
University of Helsinki, Finland
samuli.siltanen@helsinki.fi

www.siltanen-research.net

Suomalaisen ydintekniikan päivät
Helsinki, October 30, 2019

http://www.siltanen-research.net


Finnish Centre of Excellence in

Inverse Modelling and Imaging      
2018-20252018-2025

Finland

•HHH
HHH

H

�
�
�
�

•�������
•�
�
�
�
�

•```
``` •�

�
�
�
�
�
�
�

•H
HH

H
HH

HH



This is a joint work with

Rasmus Backholm, Helsinki Institute of Physics

Tatiana Bubba, University of Helsinki, Finland

Camille Bélanger-Champagne, University of British Columbia, Canada

Tapio Helin, LUT University, Finland

Peter Dendooven, Helsinki Institute of Physics

Simultaneous Reconstruction of Emission and Attenuation
in Passive Gamma Emission Tomography of Spent Nuclear Fuel,
to appear in Inverse Problems and Imaging



Outline

The IAEA PGET challenge

Filtered back-projection

Variational regularization for X-ray tomography

Our PGET method in a nutshell



PGET measurement device

I Passive Gamma Emission
Tomography

I Similar idea as in medical SPECT
I PGET strength: ability to image

activity of single fuel pins
I IAEA started development in the

80’s, approved for inspections in
2017

I Only one device exists at the
moment, two more are being built

https://ideas.unite.un.org/iaea-
tomography/Page/Home .



Measurement geometry of the PGET device



How We Won Silver in IAEA PGET Challenge



Filtered back projection

Ground truth,
present / missing

Activity
reconstruction

Attenuation
reconstruction

Not applicable



Filtered back projection

Ground truth,
present / missing

Classification,
present / missing



Regularization with geometry aware prior

Ground truth,
present / missing

Activity
reconstruction

Attenuation
reconstruction



Regularization with geometry aware prior

Ground truth,
present / missing

Classification,
present / missing
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Here is a 2D slice through a human head

Andrew Ciscel,
Wikimedia
commons



Modern CT scanners look like this
W
ikim

edia
com

m
ons



This is the inverse problem of tomography:
we only know the data

https://youtu.be/pr8bXB0oAqI

https://youtu.be/pr8bXB0oAqI


This is an illustration of the standard
reconstruction by filtered back-projection

https://youtu.be/tRD58IO1FKw

https://youtu.be/tRD58IO1FKw


Here is a simple example of tomographic data collection,
with two discs as the target

https://youtu.be/5DUGTXd26nA

https://youtu.be/5DUGTXd26nA


Back-projection twrows the measured data back
into the image domain

https://youtu.be/5DUGTXd26nA

https://youtu.be/5DUGTXd26nA


Final reconstruction involves filtering
on top of the back-projection

Multiplication with
“ice-cream cone”

f̂ (ξ) |ξ|f̂ (ξ)

FFT
IFFT



Data is collected by rotating the system
around the fuel assembly



Data is collected by rotating the system
around the fuel assembly



Data is collected by rotating the system
around the fuel assembly
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Reconstructions of a 2D slice through the walnut
using filtered back-projection (FBP)

FBP with comprehensive data
(1200 projections)

FBP with sparse data
(20 projections)



Sparse-data reconstruction of the walnut using
non-negative total variation regularization

Filtered back-projection Constrained TV regularization
argmin
f ∈Rn

+

{
‖Af −m‖22 + α‖∇f ‖1

}



Two horizontal X-rays give us two numbers:
row sums of the 2×2 array of attenuations

8 (= 2 + 6)

9 (= 2 + 7)
2 6

2 7

• -

• -



Tomographic imaging requires collecting X-ray
data along another direction as well

4 13

2 6

2 7

•

?

•

?



“Direct problem” in this example is to compute
row and column sums of a known interior

4 13

8

9
2 6

2 7

•

?

•

?

• -

• -



“Inverse problem” in this example is to recover the
interior numbers from the measurements

4 13

8

9
? ?

? ?

•

?

•

?

• -

• -



With such a limited amount of data, the inverse
problem has multiple solutions!

4 13

8

9
2 6

2 7
4 13

8

9

-1 9

5 4

8

9

4 4

0 9



Penalty calculation for candidate 1 (true target).
First the penalty from (mis)matching X-ray data

(4− 4)2 (13− 13)2

(8− 8)2

(9− 9)2

2 6

2 7

Data penalty: (8− 8)2 + (9− 9)2 + (4− 4)2 + (13− 13)2 = 0.



Penalty calculation for candidate 1.
Then the penalty from prior information

2 6

2 7

Data penalty: (8− 8)2 + (9− 9)2 + (4− 4)2 + (13− 13)2 = 0.
Prior penalty: |2− 6|



Penalty calculation for candidate 1.
Then the penalty from prior information

2 6

2 7

Data penalty: (8− 8)2 + (9− 9)2 + (4− 4)2 + (13− 13)2 = 0.
Prior penalty: |2− 6|+ |2− 7|



Penalty calculation for candidate 1.
Then the penalty from prior information

2 6

2 7

Data penalty: (8− 8)2 + (9− 9)2 + (4− 4)2 + (13− 13)2 = 0.
Prior penalty: |2− 6|+ |2− 7|+ |2− 2|



Penalty calculation for candidate 1.
Then the penalty from prior information

2 6

2 7

Data penalty: (8− 8)2 + (9− 9)2 + (4− 4)2 + (13− 13)2 = 0.
Prior penalty: |2− 6|+ |2− 7|+ |2− 2|+ |6− 7| = 4+ 5+ 0+ 1 = 10.



Penalty calculation for candidate 1. Total penalty
is the sum of data and prior penalties

2 6

2 7
data penalty 0

+ prior penalty 10
= total penalty e10



Which of candidates has smallest total penalty?

2 6

2 7
data penalty 0

+ prior penalty 10
= total penalty e10

True target

3 3

3 3
data penalty 66

+ prior penalty 0
= total penalty e66

Wrong data,
good “tissue type”

4 4

0 9
data penalty 0

+ prior penalty 18
= total penalty e18

Right data,
bad “tissue type”



The problem can be solved in general using
optimization

4 13

8

9

x1 x3

x2 x4

General target
Find numbers x1 ≥ 0, x2 ≥ 0, x3 ≥ 0 and
x4 ≥ 0 such that the sum of these two
penalties is as small as possible:

Data penalty: (x1+x3−8)2+(x2+x4−9)2

+(x1+x2−4)2+(x3+x4−13)2

Prior penalty: |x1 − x3|+ |x2 − x4|
+ |x1 − x2|+ |x3 − x4|

This method is called total variation regularization.



Solution from optimization method

2 6

2 7
data penalty 0

+ prior penalty 10
= total penalty e10

True target

2.5 6

2.5 6
data penalty 1.6

+ prior penalty 7.0
= total penalty e8.6

Total variation
regularization
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Reconstruction as a minimization problem

Reconstruction images are obtained by solving

min(λ,µ)

{
‖F (λ, µ)−m‖22 +

∑
i

αiPi (λ, µ)

}

I λ is the emission image, µ is the attenuation image.
I Data fit term ‖F (λ, µ)−m‖22 measures how well the forward

projection F (λ, µ) matches the measurement m.
I The regularization terms

∑
i αiPi (λ, µ) incorporate prior

knowledge into the reconstruction process, i.e., they predispose
the algorithm towards certain kind of images.



Bounds

Need to set bounds for the emission and attenuation values in the
minimization problem to produce reasonable images.

I Excludes the possibility of a
material with high emission
but low attenuation value.

I Some way of estimating
these bounds before the
minimization is needed.

E
m
is
si
on

λ
(a
.u
.)

Attenuation µ (mm-1)



Geometry aware prior

Ground truth,
present / missing

Activity
reconstruction

Attenuation
reconstruction



Thank you for your attention!
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