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 Utilizing the data from Halden MOX experiments
• The Halden data lake was recently opened

 Developing the MOX capabilities of the KRAKEN framework [1]
• FINIX is especially designed for coupled calculations

 Improve VTT’s competence in MOX fuels and high Pu content 

fuels

 Get more validation for FINIX
• Validation against the state-of-the-art FRAPCON-4.0 code [2]

Motivation
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 Mixed oxide (MOX) fuels
• Composed of uranium (~ 95 wt% with enrichment ~1 wt%) and 

plutonium oxides (~ 5 wt%)

• Introduced already in the 60s

 Benefits of MOX fuels
• The fuel pellets can be manufactured from recycled fuel

• U-238 transmutes to fissile Pu-239

• Can be manufactured from weapons-grade plutonium

• The fuel can reach higher burnups, which makes the fuel cycle more 

efficient

Basics of MOX fuels



Methods
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 The mixture nature causes MOX fuels to have specific 

properties [2]
• Any mixing process will leave Pu-rich spots of size > 10 µm

• Fuel homogeneity affects the fuel power distribution

• The Pu-rich spots evolve through diffusion during irradiation

• Many models do not capture these microstructural changes

 This leads to differences in thermal, mechanical and 

fission gas release performance compared to UO2

• Especially high burnup behaviour has been studied (also in 

this work)

MOX fuel details
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 The changes were made for 

three thermal and one 

mechanical model
• Thermal: Fuel thermal conductance 

λth, fuel heat capacity cp and fuel

melting point Tmp

• Mechanical: Fuel thermal strain εth

 The most significant effect is 

given by the thermal 

conductance λth

The models

[3]

[4]
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 The models were implemented to FINIX source code along with 

new input options
• Fuel type, Pu-wt%

 The validation input-files were obtained by converting FRAPCON 

inputs to FINIX inputs with a custom made Python tool
• FRAPCON inputs from the integral assessment report [5]

 For further research purposes a version of FINIX that allows 

inputting model parameters was also implemented

Implementation



MOX model
results
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 The MOX models were validated 

using 8 Halden cases
• Rods had Pu content of around 5%

• Starting burnups ranging between 

23 and 57 MWd/kg

• All had been irradiated in a power 

reactor prior to refabrication

• Prediction accuracy improvement 

from old FINIX version around 30%

Validating FINIX against Halden data

Right: Masterplot showing 

the FINIX predicted fuel 

centreline temperatures 

against the measured 

ones.
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 Comparing FINIX and FRAPCON results showed that FRAPCON 

performed slightly better
• FINIX total error was 7.5% and FRAPCON was 5.9%

• Both struggled in the high burnup IFA629-3R6 case

Validation against FRAPCON-4.0

Far left: The FINIX 

masterplot from previous 

slide.

Left: Similar masterplot

for FRAPCON-4.0 

predictions.
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 The error was measured as 

relative error pointwise

• Interpolation was used to get the 

same timestep for both simulation 

and reference data

Inspecting the errors

Right: The relative error of the simulations plotted 

as a function of fuel burnup. The figure shows well 

that the error increases as burnup increases.



Further research
- sensitivity analysis
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 The idea was to see where 

the solution breaks and 

what values give the best 

fit
• Breaking was caused by 

infinite temperature values 

resulting NaN output

 The implementation was 

done with a MATLAB script

Sensitivity analysis for the thermal 
boundary condition

Above: Diagram explaining the logic of the boundary option 

testing script.
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 The best results were obtained with 

option that uses user-given heat 

transfer coefficient hcc and coolant 

bulk temperature

 Heat transfer coefficient hcc values 

around 1e4 broken the simulation

Results from the sensitivity analysis

Above: Results for fuel centreline temperature in IFA648-R1, 

when the boundary options were modified.

Left: Results from IFA629-3R6 with the boundary option 

modifications. The breaking of the simulation is clearly visible 

with the green line.
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 Implementing an optimization script
• Allows to find optimal input parameters

• Useful for model development and validation

 The script was based around the 

optimization tools available in MATLAB
• fminsearch, fmincon, bayesopt

 The script was first tested for finding optimal 

heat transfer coefficient hcc value
• Later testing performed with MOX fuel thermal 

conductance λth model

Taking the idea further…



The iteration logic of the optimization script

Above: Diagram showing the iteration logic of the optimization script.
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 Make use of parallel 

processing

 Implement weighting 

procedure to guide the 

optimization algorithm

 Mathematically:
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 Optimal value for heat transfer 

coefficient hcc was found
• This decreased the total error to the 

FRAPCON-4.0 level 

Results from the optimization of heat 
transfer coefficient

Above: Masterplot showing the measured vs. predicted 

fuel centreline temperatures with optimized hcc.

Left: The model for the dependency of the total error 

and heat transfer coefficient.
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 Optimizing the burnup 

dependency in the model 

improved the results quite 

similarly as the hcc value

Optimizing the fuel thermal conductance 
model for MOX fuels

Above: (a) The masterplot from the MOX cases prior to any optimization. 

(b) Masterplot showing the performance of FINIX with the optimized fuel 

thermal conductance model λth.

Left: Fuel thermal conductance as a function of burnup in different 

temperatures. The optimized curves (blue) show the high burnup 

behaviour changes.
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 The approach assumes that the error comes from the 

models/inputs and thus cannot adapt to for instance 

instrumentation errors
• One solution would be to filter the input and reference data beforehand

 The algorithm needs some kind of heuristics in order to escape 

from local minimums and keep the model physical
• Bayesian inference with informative priors for model parameters could 

help

 For higher number of cases a more efficient tool would be needed
• Python implementation for a computer cluster is under work

• It utilizes the Bayesian optimization library [6]

Issues with the optimization approach



Summary
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 FINIX fuel performance code can now be used to model MOX 

fuels

 MOX implementation was validated against experimental data and 

the state-of-the-art FRAPCON-4.0 code
• The total relative error was less than 10%

• Differences between FRAPCON and FINIX were small

• Both codes shared the same difficulties

 The boundary options of FINIX were studied extensively

 A new kind of optimization approach was demonstrated and its 

potential for model development was shown



Thank you

Questions?
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