PAUL SCHERRER INSTITUT

J. Kalilainen, W. Schenler, J. Krepel, T. Lind, H.-M. Prasser :: Paul Scherrer Institut

High Temperature Gas-cooled Reactors in a European Electricity Supply Environment; Main Outcomes of a Project in PSI

Nuclear Science and Technology Symposium - SYP2019 Helsinki, Finland, 30-31 October 2019

Introduction: HTGRs

- High temperature gas-cooled reactor (HTGR)
- Common features: Gas cooling (He), high (700-900 °C) outlet gas temperature
- Several built and operated between 60s and 90s.

Picture: IAEA-TECDOC-1645

Introduction: HTGRs

- High temperature gas-cooled reactor (HTGR)
- Common features: Gas cooling (He), high (700-900 °C) outlet gas temperature
- Several built and operated between 60s and 90s.

Picure: www.jaea.go.jp

Chinese 10 MW high-temperature gas-cooled test reactor (HTR-10)

Picture: Zhang et al., Nucl. Eng. Des. 239, 2009

Introduction: HTR-PM

- HTR-PM is a 250 MWth twin unit, modular pebble bed reactor, currently being build in Shandong province, China
- Jan. 2019: first steam generator hoisted, grid connection 2020 (ref. CNNC)
- Most of the work in this project focused on the HTR-PM

Past: PROTEUS at PSI

- Zero power reactor (max. 1 kW), February 1968 April 2011
- Cylindrical central cavity (\emptyset 1.2 m) driven critical by a surrounding graphite region equipped with fuel pins containing UO₂ with an enrichment of 5 %
- Part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs.

Past: pebble movement and wear study at PSI

- Investigation on graphite dust creation due to wear on pebbles caused by pebbles sliding against each other and reactor walls.
- Pebble movement simulations were performed with full scale reactor with 440000 pebbles
 - Different parameters investigated:
 pebble velocity and pebble bed
 packing density, effect of the friction
 coefficient (0.2 0.8).

Rycroft et al., 2013. *Granular flow in pebble-bed nuclear reactors: Scaling, dust generation and stress*. Nucl. Eng. Des. 265, 69-84. Snapshot when approx. 20 % of pebbles drained. Amount of wear particle experiences in units of work with μ =0.35.

Full size reactor drainage simulation.

- In years 2015-2019, Paul Scherrer Institut (PSI) conducted a project: Feasibility and plausibility of innovative reactor concepts in an European electricity supply environment".
 - Main focus on modern pebble bed high temperature reactor, tie in with earlier studies on pebble bed reactors carried out at PSI.
 - Main purpose to build-up the specific HTGR know-how in Switzerland / provide in-depth information to decision makers / identify research needs for the future.
- Specific topics from different research areas.
 - Focus on the student projects (MSc & semester/summer work)
 - Main focus on HTR-PM design

Specific research & knowledge base

Regular meetings and seminars with the Tsinghua university Beijing – INET, on various topics on the HTGRs

Engineered safety systems

Economic assessment of HTGRs

Estimating the costs of Small Modular Reactors

Top-down methodology - based on reference cost data from similar existing technologies (or the ones being built) adjusted (e.g. by scaling) to analyzed subject design Including 4 iPWRs and HTR-600

	4 most developed iPWRs					
	ACP100	CAREM	NuScale	SMART	HTR-600	
Technology group	iPWR	iPWR	iPWR	iPWR	HTR	
Country	China	Argentina	U.S.A	South Korea	China	
Electrical Power	100 MWe	30 MWe	50 MWe	100 MWe	600 MWe	
Reference plant	ACPR1000 at Yangjang	Hualong One planned to be built	AP1000 at Summer and Vogtle	APR1400 at Shin Kori and Shin Haul	HTR-PM demo plant	

	Scaling factors			
Account	Small changes in	Large changes in		
	power output	power output		
Structures and Improvements	0.5	0.59		
Reactor Plant Equipment	0.6	0.8		
Turbine Plant Equipment	0.8	0.83		
Electric Plant Equipment	0.4	0.39		
Miscellaneous Plant Equipment	0.3	0.59		
Heat Rejection System	0.8	1.06		
Construction Service	0.45	0.69		
Field Office Eng. & Service	0.4	0.69		
Owner's cost	0.5	0.64		

 $Cost_{new} = Cost_{ref} * \left(\frac{Power_{new}}{Power_{ref}}\right)^{a}$

From MSc thesis of P. Dobrzynski, 2017

IN

Economic assessment of HTGRs

Estimating the costs of Small Modular Reactors

HTGR - Cost breakdown data for the HTR-PM -> estimated costs for a scale up to a 600 MWe design -> cost reductions for shared equipment in a 2x600 MWe plant -> learning curve cost reductions (10 %) Comparison to a reference: Chinese Generation II+ CPR1000 design, using the costs of the Fuqing 1-3 reactors.

	HTR-600				
	ACP100	CAREM	NuScale	SMART	HTR-600
Technology group	iPWR	iPWR	iPWR	iPWR	HTR
Country	China	Argentina	U.S.A	South Korea	China
Electrical Power	100 MWe	30 MWe	50 MWe	100 MWe	600 MWe
Reference plant	ACPR1000 at Yangjang	Hualong One planned to be built	AP1000 at Summer and Vogtle	APR1400 at Shin Kori and Shin Haul	HTR-PM demo plant

Figures: Kalilainen et al. HTR2018

Accident study in HTR-PM using MELCOR code

MELCOR 2.2 code used to simulations of Pressurized and De-pressurized loss of forced flow accidents (PLOFC/DLOFC) in the HTR-PM

The input from open literature on HTR-PM and earlier HTGR work MELCOR Comparison to analysis by Zheng et al., Ann Nucl Energy 36 (2009)

(MPB script, MSc thesis of F. Vitullo, EPFL Lausanne, 2017)

- Monte Carlo code for the full-core in HTR-PM
- Burnup history of 3000 pebbles evaluated

For more information please refer to: Vitullo et al., 2019. Statistical Burnup Distribution of Moving Pebbles in HTR-PM reactor. Accepted for publishing in Journal of Nuclear Engineering and Radiation Science <u>https://doi.org/10.1115/</u> <u>1.4044910</u>.

Statistical burnup distribution for each pass through the HTR-PM reactor with 16 passes fuel cycle, (Vitullo et al., 2019).

Fuel cycle studies for pebble bed HTGRs

- HTGRs cannot be operated in a closed fuel cycle with purely fertile feed
- Analysis of Th pebbles as initial burnable poison
- Utilization of natural resources not improved in any of the simulation cases.

Excess reactivity in Th-U. For more information, please refer to: *Krepel et al., Ann. Nucl. Energy 128, 2019*

For more information, please refer to: Sisl et al. Proceedings of HTR 2018, Warsaw, Poland, October 8-10, 2018 Page 15

Waste volume reduction by pebble fragmentation for HTGRs

- Cost assessment on the direct disposal of the pebble fuel
 - Possibilities for cost reductions through waste management measures
- Feasibility study of a combined transport and treatment canister for HV pulse fragmentation experiments with irradiated pebbles

Fig. 6. Crushed fuel pebble after 3 seconds (15 pulses)

3 seconds of exposure (15 pulses)

Fig. 7. Liberated exerted exer

Fig. 7. Liberated coated particles (Ø1 mm)

1 minute of exposure (300 pulses)

Pictures above: M. A. Fütterer et al.: A High Voltage Head-End Process for Waste Minimization and Reprocessing of Coated Particle Fuel for High Temperature Reactors. Proceedings of ICAPP '10.

Vivek Maradia, 2018: Design for a canister with shielding

Economic

Summary and future research needs

assessment
 reduction
 future research
 future researc

Fuel cycle studies

Waste volume

• Economic assessment of the HTR-600

Accident analysis

- Loss of forced cooling accidents in HTR-PM
- Fuel cycle option for HTGRs: use of Th-U fuel and burnup distribution in HTR-PM
- Waste volume reduction study

Several potential research topics were identified at the end of the project. These include:

- Advanced simulation of accident scenarios in modular pebble bed reactors in addition to LOFC accidents, including:
 - Hypothetical extreme accidents and emergency measures
 - Release of fission products during the accident and normal operating conditions
- Advanced fuel cycle studies: effect of pebble clustering
- Advanced economic study: fuel cycle cost, capital cost development

Summary and

Wir schaffen Wissen – heute für morgen

Kiitos!