Safety case for Loviisa LILW repository 2018

Focus on scenarios in the safety case context

Olli Nummi, Fortum Power and Heat Oy, Loviisa NPP Nuclear Science and Technology Symposium 2019 (SYP2019), October 31th 2019

Join the change

Safety case

- "Documentation for demonstrating compliance with the long-term safety requirements" (STUK 2018a)
- Scope defined in international guidance (e.g. IAEA 2011, 2012), STUK's requirements (STUK 2018a,b)
- Safety case methodologies by Posiva (2012) & SKB (2015) were followed

Disposal site

Picture: Fortum Power and Heat Oy

Waste caverns

Activity in comparison to spent nuclear fuel

@fortum

Safety functions

Figure: Nummi 2019a

Concept of scenario

- **Uncertainty** in future evolution is managed by scenarios
- Scenario describes a potential evolution of the entire disposal system during the assessment period (100,000 years) associated with fulfilment of or deviation from safety functions and performance targets
 - Scenarios are based on performance assessment results and uncertainties therein
- Principles adopted:
 - Plausibility
 - Consistency
 - Small number & distinctness
 - Transparency & traceability

Phases of scenario formulation (after Kosow and Gaßner 2008)

• Phase 1: Scenario field identification

- What do we want study?
- What is included / excluded?

Phase 2: Key factor identification

- What are the factors driving the system evolution
- Key characteristics of barriers providing safety functions identified with uncertainty

• Phase 3: Key factor analysis

- Define *states* (evolutions) for the key factors

Key factors and key factor states

	Key factor	Key factor states				
ediate level packages	Concrete container evolution	Reference evolution	Accelerated concrete degradation	Mechanical damage		
	Areas with zero wall thickness in reactor pressure vessels and steam generators	<i>Reference evolution</i>	Initial defect in welds			
Intermo waste	Reactor pressure vessel and steam generator wall thicknesses	<i>Reference evolution</i>	Early loss of alkaline conditions and microbiological corrosion	Initial defect and microbiological corrosion	Early loss of alkaline conditions, initial defect and microbiological corrosion	
Concrete barriers	Concrete barrier evolution	<i>Reference evolution</i>	Accelerated concrete degradation	Mechanical damage		
Waste caverns	Groundwater flow through the waste caverns	<i>Reference evolution</i>	No plugs			
Closure	Hydraulic conductivity of the concrete plugs	Reference evolution	Gap between concrete and rock	Mechanical damage		

Example of evolution – reactor pressure vessel corrosion time

Phase 4: Scenario formulation

- Combination of key factor states into scenarios
 - $3 \times 2 \times 4 \times 3 \times 2 \times 3 = 432$ possible combinations
- Morphological analysis
 - Consider dependencies between key factor states and scenario distinctness

Hydraulic conductivity of the concrete plugs	Groundwater flow through the waste caverns	Concrete barrier evolution	Concrete container evolution	Areas with zero wall thickness in reactor pressure vessels and steam generators	Reactor pressure vessel and steam generator wall thicknesses
Reference evolution	Reference evolution	Reference evolution	Reference evolution	Reference evolution	Reference evolution
Gap between concrete and rock	No plugs	Accelerated concrete degradation	Accelerated concrete degradation	Initial defect in welds	Early loss of alkaline conditions and microbiological corrosion
Mechanical damage		Mechanical damage	Mechanical damage		Initial defect and microbiological corrosion
					Early loss of alkaline conditions, initial defect and microbiological corrosion

Phase 5: Scenario transfer

Scenarios and calculation cases

Resulting dose rates in each scenario

Figure: Jansson et al. 2019

Resulting dose rates in each scenario

EXHAUST CONCRETE PLATE \times PRESSURE BEDPLATE

Literature

- IAEA (2011), Disposal of Radioactive Waste, IAEA Safety Standards Series No. SSR-5, Vienna, Austria.
- IAEA (2012), The Safety Case and Safety Assessment for the Disposal of Radioactive Waste, IAEA Safety Standards Series No. SSG23, Vienna, Austria.
- Jansson et al. 2019. Safety case for Loviisa LILW repository 2018 – Analysis of releases and doses. Fortum Power and Heat Oy, Espoo.
- Kosow, H. & Gaßner, R. 2008. Methods of future and scenario analysis: overview, assessment, and selection criteria. DIE Research Project "Development Policy: Questions for the Future". Deutsches Institut für Entwicklungspolitik (DIE), Bonn, Germany. (Studies / Deutsches Institut für Entwicklungspolitik; 39). ISBN 978-3-88985-375-2.
- Nummi 2019a. Safety case for Loviisa LILW repository 2018

 Main report. Fortum Power and Heat Oy, Espoo.

- Nummi 2019b. Safety case for Loviisa LILW repository 2018

 Performance assessment and formulation of scenarios.
 Fortum Power and Heat Oy, Espoo.
- Posiva 2012. Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Synthesis 2012. Posiva report 2012-12 Posiva Oy, Eurajoki, Finland. ISBN 978-951-652-193-3.
- SKB 2015. Safety analysis for SFR Long-term safety Main report for the safety assessment SR-PSU. SKB report TR-14-01. Svensk Kärnbränslehantering AB (SKB), Stockholm, Sweden.
- STUK 2018a. Radiation and Nuclear Safety Authority Regulation on the Safety of Disposal of Nuclear Waste. Regulation STUK Y/4/2018.
- STUK 2018b, Disposal of nuclear waste, Guide YVL D.5.

