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Introduction
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What is thermonuclear fusion?
 Easiest option DT fusion

– Neutron with 14.1MeV energy

 Need a tritium

– Lithium breeding reactions

– Li7 more abundant

– Li6 has better cross-section

– Enriched lithium needed

Magnetic field to confine 

the plasma

– Tokamaks and stellarators
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Tokamaks vs. stellarators
 Tokamak

– Magnetic field from coils and 

induced current

– Pulsed operation

– Forerunner (i.e. 90% of 

research volume)

– Close to show-stopping 

problems

 Design-wise: fusion power 

plant ~90% the same

 Decision point tokamaks vs. 

stellarators in future

 Stellarator

– Magnetic field from coils

– Steady-state operation

– Basic performance issues

– Have we seen all problems?

– Complicated geometry

– Currently no show

 Optimized stellarators

– Wendelstein 7-X as an 

example

 HELIAS line as a reactor 

option
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HELIAS as a fusion power plant candidate
 Basic HELIAS parameters

– Major radius 22m

– Minor radius 1.8m

– Plasma volume 1407m3

– Fusion power 3GW

 Optimized stellarator 

following W7-X research 

line

 Geometry induces major 

design issues

[1] F. Schauer et al. Fus. Eng. and Des., 88, 2012, 1619–1622
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Neutronics (for stellarators)
 Due to complexity, a 

parametric (CAD) model 

suggested

– Faster design iterations

– Ease neutron analysis

MCNP vs. Serpent2

– Codes have been widely 

benchmarked

– MCNP6 can work “directly” 

with CAD just as Serpent2

 Right: example of HELIAS 

CAD model
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Overview of breeding blanket
 Breeding blanket functions

– Breed tritium

– Slow down neutrons

– Heat water

– Shield from neutrons

 Various design candidates

– W(ater)C(ooled)L(ithium)L(ead)

– H(elium)CLL

– D(ual)CLL

– HCP(ebble)B(ed)

 Stellarators

– Coils close to plasma

– High breeding and shielding [2] U. Fischer et al. Fus. Eng. and Des. Vol. 109–111,2016, 1458-1463
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Benchmarking MCNP vs. Serpent
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Benchmarking Serpent2 against MCNP6
 CAD geometry with cells

 Four layers, each 4000

– Plasma

– Wolfram first wall

– Eurofer first wall

– Breeding Blanket (BB) and Back 

Supporting Structure (BSS)

 Compare

– Relative/average difference in flux 

(per cell)

– 72 degree vs. 360 degree model
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Benchmarking Serpent2 against MCNP6
 Average absolute relative 

difference 0.598% (for all 

16000 cells)

 Standardized difference 

normally distributed

 Relative difference per cell

– 360 degree model, 

acceptable

– 72 degree model, issue with 

boundary conditions?
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Breeding blanket optimization
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Optimization of the breeding blanket
 To be reactor relevant, tritium 

breeding ratio 

(TBR=TPR/(neutron source 

rate)=# of T per fusion n) needs 

to exceed 1.15

 Design question: how thick 

blanket is needed?

 Boundary conditions

– Complicated coils (no space)

– Detailed design doesn’t exist

– Detailed choice for blanket 

type doesn’t exist

 Initial study with crude 

assumptions [3] F. Warmer, Fus. Eng. and Des., 123, 2017, 47-53
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Model generation via parametric model
 Assumptions

– Arbitrary # layers

– All shaped like plasma

– User defined material/thickness per layer

 Idea: scan blanket thickness, calculate 

TBR

 Two iterations

– Assume homogenized (breeding zone+ 

back support structure)

– Assume homogenized breeding zone and 

homogenized back support structure
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Breeding blanket thickness vs. TBR
Major difference between 

the iterations!

 As expected, only with 

proper breeding zone scan 

TBR>1.15

 Threshold located at 

around 45cm -> within the 

limits

 In future, need to relax 

several approximations!
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Conclusions/outlook
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Conclusions
 Stellarators studied as fusion 

power plant option

 Breeding blanket is a key 

component of any fusion power 

plant

 Neutronics essential piece of 

design

 Serpent2 was benchmarked agains

MCNP with success

 Serpent2 was used to estimate the 

necessary breeding blanket 

thickness
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Outlook
 Before design baseline, various options 

could be looked at

– Modifying blanket thickness outboard 

(more space) vs. inboard (less space)

– Need to consider other breeding 

blanket options (here only WCLL)

– Need to consider heterogenous 

materials

– Need to consider proper shape for 

each layer

 After the design baseline

– Could consider combined 

neutronics+thermohydraulics, see [4] M. 

Szogradi et al. Fus. Eng. and Des. 184, 2022, 113308

 Tokamaks with Serpent2…

[3] F. Warmer, Fus. Eng. and Des., 123, 2017, 47-53

https://www.sciencedirect.com/journal/fusion-engineering-and-design/vol/184/suppl/C
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Thank you 


