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ABSTRACT

This paper presents an in-depth analysis of how recovery time distributions are determined for the water
supply systems at Olkiluoto 1 and Olkiluoto 2 boiling water reactors (BWR) at the Olkiluoto nuclear power
plant (NPP). The paper begins with an introduction to the importance of recovery times in the context of the
Level 2 probabilistic risk assessment (PRA). The methodology for determining recovery times is detailed,
including the processing of initial values from Level 1 PRA, and the use of the Latin Hypercube Sampling
(LHS) method for the formation of random sample. The random sample is used for the calculation of log-
normal distribution parameters, which are then used in actual Level 2 PRA model. While the log-normal
distribution generally provides a good fit, it is not perfect, with some exceptions mainly due to the presence of
difficult-to-recover maintenance packages, fires, and seismic events which distort the random sample to be
less log-normal. The paper concludes that while the log-normal distribution is a useful model, it has its
limitations and suggests further research could explore other distribution models or goodness-of-fit measures

and analyze dependencies and system availability derived from the recovery time analysis further.

1 INTRODUCTION

In probabilistic risk assessment (PRA),
accurately determining recovery times for plant
damage states (PDSs) is essential for accurate
accident progression analysis in a Level 2 PRA. This
paper describes the methodology for determining the
parameters of log-normal distributions that are used
to estimate the recovery times of three water supply
systems, specifically the containment spray (CS)
system, the low-pressure reactor core spray (LPRCS)
system, and the auxiliary feedwater (AFW) system.
The focus is on Olkiluoto 1 and Olkiluoto 2 boiling
water reactors (BWR) at the Olkiluoto nuclear power
plant (NPP).

In short, the procedure starts by identifying the
100 most significant minimal cut sets (MCSs) for
each PDS from a Level 1 PRA. The aim is to find
fault combinations within the PDS MCS that could
prevent the safety function of any of the three water
supply systems. If a fault combination is found, a
recovery time is determined for it. Once each MCS
of the PDS has been processed, all unique recovery
times are collected in a table, and their cumulative
share of the total frequency of all MCS of the PDS is
calculated. Using this method, we create an initial
value matrix for each system in each PDS.

From the initial values we create a random
sample using the Latin Hypercube Sampling (LHS)
method [1], ensuring that the sample represents the

actual variation of the data set. Each sample is
calculated using the inverse cumulative distribution
function (ICDF) for the exponential distribution [2].
This sample is then used to calculate the parameters
of the log-normal distribution, as demonstrated in [3]
and [4].

The accuracy of the log-normal distribution is
then evaluated by comparing the created random
sample to the values produced by the log-normal
distribution.

The reason for using this method is because
Level 1 PRA and Level 2 PRA are not directly
connected via any interface in the Olkiluoto 1 and 2
PRA model.

This paper is a summary of the full paper
published in 7th International Conference on
Probabilistic Safety Assessment and Management &
Asian Symposium on Risk Assessment and
Management (PSAM17&ASRAM?2024) [5]. In it the
concept of dependencies and system availability
derived from recovery time analysis are also
discussed, since they are crucial for determining
recovery times in the level 2 PRA model. However,
these parameters do not influence the calculation of
log-normal parameters and thus were not included in
this summary. The full paper also includes the whole
calculation process in more detail with all the
necessary equations and examples.



2 EVALUATION OF THE RESULTS

Accuracy of the log-normal distribution can be
evaluated by comparing the created random sample
to the values produced by the log-normal distribution.
The R-squared (R?) is used for this purpose. It
represents the proportion of the variance for a
dependent variable that’s explained by an
independent variable or variables in a regression
model. Its value can vary for non-linear regressions
in the range [-oo, 1] and for a linear regression in the
range [0, 1].

LPL (an early core melt at low primary
pressure, initiated by a LOCA) PDS follows the log-
normal distribution excellently, as the R? value was
0.99. When this is visualized in figure 1, the
similarity is even more apparent. Only the first 24
hours are plotted in the figure so that the beginning
of the curve is more visible. In each figure s(x)
represents the number of random samples in each 5-
minute section, and lognp(x) represents the numerical
integral of the log-normal density function.
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Figure 1: Example plot for the CS system in
the LPL PDS.
We can also see that the data does not always
follow log-normal distribution perfectly, as

evidenced by the suboptimal R2 value of 0.74 for the
CS system in the RHT (reactivity control is totally
lost) PDS, shown in figure 2. The difference is
mainly due to what kind of MCSs there are in the
RHT (a late core melt caused by the loss of residual
heat removal, initiated by a transient) PDS and what
is their proportion of the PDS’s total frequency.
RHT’s MCSs contain many difficult-to-recover
maintenance packages and fires, which have a long
recovery time. The relatively large proportion of
these long recovery times distort the random sample
to be less log-normal.
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Figure 2. Example plot for the AFW system
in the RHT PDS.

Even worse R2 value is for the LPRCS system
in the RCO (reactivity control is totally lost) PDS,
shown in figure 2. It is -0.07, which indicates that the
data does not follow log-normal distribution at all.
This is because in the RCO plant failure state, there
are many MCSs that include seismic events. For
these, a recovery time of 48 hours is used, and since
there are hardly any other recovery times observed,
the random sample distorts to completely non-log-
normal. The same phenomenon was observed with
the ROP (very early reactor overpressurization
prevents core cooling) PDS, but in the context of fire
events.
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Figure 3: Example plot for the LPRCS system
in the RCO PDS.

Three water supply systems were analyzed
across nine different PDSs, resulting in a total of 27
figures. To conserve space, only three of these figures
are included in this paper. Regarding the fits,

. 16 of them had an R2 value above 0.9

(indicating a good fit),



o four had an R? value less than 0.9 but
greater than O (indicating a poor fit),

o four had an R? value less than O
(indicating that the data was completely
non-log-normal), and

° three had an R2 value of NaN (indicating
that the system is always available in the
PDS).

The R? values vary due to the types of MCSs
present in each PDS and their respective recovery
times. MCSs with long recovery times, such as those
involving difficult-to-recover maintenance packages,
fires, seismic events and other hazards, tend to distort
the distribution, leading to lower or even negative R2
values.

The drawback of the R? value is that it can be
misleading with non-linear models. Even though we
can calculate R? for non-linear regression, it doesn’t
provide a clear interpretation in terms of the
proportion of variance explained by the predictors.
This can lead to an overestimation of the goodness of
fit indicated by the R? value. Despite this drawback,
the R? value, when used together with visual
inspection, provides a quick and easy-to-understand
measure of the overall fit of the model, and that is
why it is used in this evaluation.

When dealing with log-normal distributions,
it’s often appropriate to use some goodness-Of-fit
measures other than R? value, that might be more
suitable for this type of distribution, such as the
Akaike Information Criterion (AIC) or Bayesian
Information Criterion (BIC), as they take into
account both the goodness of fit of the model and the
complexity of the model. However, applying these
methods would require testing multiple different
models, which is outside the scope of this paper.
Instead, this paper focuses on providing a
comprehensive understanding of the basic statistical
properties and applications of the log-normal
distribution.

3 CONCLUSION

The log-normal distribution models the
recovery times in different PDS quite well, but not
perfectly. The goodness of fit of the log-normal
distribution was evaluated by comparing the created
random sample to the values produced by the log-
normal distribution. The R-squared (R?) value was
used together with visual inspection as a measure of
the overall fit of the model. For most of the data, the
R2 value was close to 1, indicating an excellent fit.
However, there were some exceptions, where the R?
values were suboptimal or even negative, indicating

a poor fit. The difference between fits is due to what
kind of MCSs there are in the PDS and what is their
proportion of the PDS’s total frequency. MCSs that
contain events with long recovery times, such as
difficult-to-recover maintenance packages, fires, and
seismic events, distort the random sample to be less
log-normal.

In  conclusion, while the log-normal
distribution provides a useful model for recovery
times in different PDS, it is not without its
limitations. It is important to consider the specific
characteristics of each PDS and the types of faults
that can occur when applying this model. Further
research could explore other goodness-of-fit
measures, such as AIC or BIC, to find distribution
models that might provide a better fit for the recovery
time data in cases where the data does not follow the
log-normal distribution.
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