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ABSTRACT 

This paper presents an in-depth analysis of how recovery time distributions are determined for the water 

supply systems at Olkiluoto 1 and Olkiluoto 2 boiling water reactors (BWR) at the Olkiluoto nuclear power 

plant (NPP). The paper begins with an introduction to the importance of recovery times in the context of the 

Level 2 probabilistic risk assessment (PRA). The methodology for determining recovery times is detailed, 

including the processing of initial values from Level 1 PRA, and the use of the Latin Hypercube Sampling 

(LHS) method for the formation of random sample. The random sample is used for the calculation of log-

normal distribution parameters, which are then used in actual Level 2 PRA model. While the log-normal 

distribution generally provides a good fit, it is not perfect, with some exceptions mainly due to the presence of 

difficult-to-recover maintenance packages, fires, and seismic events which distort the random sample to be 

less log-normal. The paper concludes that while the log-normal distribution is a useful model, it has its 

limitations and suggests further research could explore other distribution models or goodness-of-fit measures 

and analyze dependencies and system availability derived from the recovery time analysis further. 

 

1 INTRODUCTION 

In probabilistic risk assessment (PRA), 

accurately determining recovery times for plant 

damage states (PDSs) is essential for accurate 

accident progression analysis in a Level 2 PRA. This 

paper describes the methodology for determining the 

parameters of log-normal distributions that are used 

to estimate the recovery times of three water supply 

systems, specifically the containment spray (CS) 

system, the low-pressure reactor core spray (LPRCS) 

system, and the auxiliary feedwater (AFW) system. 

The focus is on Olkiluoto 1 and Olkiluoto 2 boiling 

water reactors (BWR) at the Olkiluoto nuclear power 

plant (NPP). 

In short, the procedure starts by identifying the 

100 most significant minimal cut sets (MCSs) for 

each PDS from a Level 1 PRA. The aim is to find 

fault combinations within the PDS MCS that could 

prevent the safety function of any of the three water 

supply systems. If a fault combination is found, a 

recovery time is determined for it. Once each MCS 

of the PDS has been processed, all unique recovery 

times are collected in a table, and their cumulative 

share of the total frequency of all MCS of the PDS is 

calculated. Using this method, we create an initial 

value matrix for each system in each PDS. 

From the initial values we create a random 

sample using the Latin Hypercube Sampling (LHS) 

method [1], ensuring that the sample represents the 

actual variation of the data set. Each sample is 

calculated using the inverse cumulative distribution 

function (ICDF) for the exponential distribution [2]. 

This sample is then used to calculate the parameters 

of the log-normal distribution, as demonstrated in [3] 

and [4]. 

The accuracy of the log-normal distribution is 

then evaluated by comparing the created random 

sample to the values produced by the log-normal 

distribution. 

The reason for using this method is because 

Level 1 PRA and Level 2 PRA are not directly 

connected via any interface in the Olkiluoto 1 and 2 

PRA model. 

This paper is a summary of the full paper 

published in 7th International Conference on 

Probabilistic Safety Assessment and Management & 

Asian Symposium on Risk Assessment and 

Management (PSAM17&ASRAM2024) [5]. In it the 

concept of dependencies and system availability 

derived from recovery time analysis are also 

discussed, since they are crucial for determining 

recovery times in the level 2 PRA model. However, 

these parameters do not influence the calculation of 

log-normal parameters and thus were not included in 

this summary. The full paper also includes the whole 

calculation process in more detail with all the 

necessary equations and examples. 
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2 EVALUATION OF THE RESULTS 

Accuracy of the log-normal distribution can be 

evaluated by comparing the created random sample 

to the values produced by the log-normal distribution. 

The R-squared (R2) is used for this purpose. It 

represents the proportion of the variance for a 

dependent variable that’s explained by an 

independent variable or variables in a regression 

model. Its value can vary for non-linear regressions 

in the range [-∞, 1] and for a linear regression in the 

range [0, 1]. 

 

LPL (an early core melt at low primary 

pressure, initiated by a LOCA) PDS follows the log-

normal distribution excellently, as the R2 value was 

0.99.  When this is visualized in figure 1, the 

similarity is even more apparent. Only the first 24 

hours are plotted in the figure so that the beginning 

of the curve is more visible. In each figure s(x) 

represents the number of random samples in each 5-

minute section, and lognp(x) represents the numerical 

integral of the log-normal density function. 

 

 
Figure 1: Example plot for the CS system in 

the LPL PDS. 

 

We can also see that the data does not always 

follow log-normal distribution perfectly, as 

evidenced by the suboptimal R² value of 0.74 for the 

CS system in the RHT (reactivity control is totally 

lost) PDS, shown in figure 2. The difference is 

mainly due to what kind of MCSs there are in the 

RHT (a late core melt caused by the loss of residual 

heat removal, initiated by a transient) PDS and what 

is their proportion of the PDS’s total frequency. 

RHT’s MCSs contain many difficult-to-recover 

maintenance packages and fires, which have a long 

recovery time. The relatively large proportion of 

these long recovery times distort the random sample 

to be less log-normal. 

 

 
Figure 2. Example plot for the AFW system 

in the RHT PDS. 

 

Even worse R² value is for the LPRCS system 

in the RCO (reactivity control is totally lost) PDS, 

shown in figure 2. It is -0.07, which indicates that the 

data does not follow log-normal distribution at all. 

This is because in the RCO plant failure state, there 

are many MCSs that include seismic events. For 

these, a recovery time of 48 hours is used, and since 

there are hardly any other recovery times observed, 

the random sample distorts to completely non-log-

normal. The same phenomenon was observed with 

the ROP (very early reactor overpressurization 

prevents core cooling) PDS, but in the context of fire 

events. 

 

 
Figure 3: Example plot for the LPRCS system 

in the RCO PDS. 

 

Three water supply systems were analyzed 

across nine different PDSs, resulting in a total of 27 

figures. To conserve space, only three of these figures 

are included in this paper. Regarding the fits, 

• 16 of them had an R² value above 0.9 

(indicating a good fit),  
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• four had an R² value less than 0.9 but 

greater than 0 (indicating a poor fit), 

• four had an R² value less than 0 

(indicating that the data was completely 

non-log-normal), and  

• three had an R² value of NaN (indicating 

that the system is always available in the 

PDS). 

 

The R² values vary due to the types of MCSs 

present in each PDS and their respective recovery 

times. MCSs with long recovery times, such as those 

involving difficult-to-recover maintenance packages, 

fires, seismic events and other hazards, tend to distort 

the distribution, leading to lower or even negative R² 

values. 

The drawback of the R² value is that it can be 

misleading with non-linear models. Even though we 

can calculate R² for non-linear regression, it doesn’t 

provide a clear interpretation in terms of the 

proportion of variance explained by the predictors. 

This can lead to an overestimation of the goodness of 

fit indicated by the R² value. Despite this drawback, 

the R² value, when used together with visual 

inspection, provides a quick and easy-to-understand 

measure of the overall fit of the model, and that is 

why it is used in this evaluation. 

When dealing with log-normal distributions, 

it’s often appropriate to use some goodness-of-fit 

measures other than R² value, that might be more 

suitable for this type of distribution, such as the 

Akaike Information Criterion (AIC) or Bayesian 

Information Criterion (BIC), as they take into 

account both the goodness of fit of the model and the 

complexity of the model. However, applying these 

methods would require testing multiple different 

models, which is outside the scope of this paper. 

Instead, this paper focuses on providing a 

comprehensive understanding of the basic statistical 

properties and applications of the log-normal 

distribution. 

3 CONCLUSION 

The log-normal distribution models the 

recovery times in different PDS quite well, but not 

perfectly. The goodness of fit of the log-normal 

distribution was evaluated by comparing the created 

random sample to the values produced by the log-

normal distribution. The R-squared (R²) value was 

used together with visual inspection as a measure of 

the overall fit of the model. For most of the data, the 

R² value was close to 1, indicating an excellent fit. 

However, there were some exceptions, where the R² 

values were suboptimal or even negative, indicating 

a poor fit. The difference between fits is due to what 

kind of MCSs there are in the PDS and what is their 

proportion of the PDS’s total frequency. MCSs that 

contain events with long recovery times, such as 

difficult-to-recover maintenance packages, fires, and 

seismic events, distort the random sample to be less 

log-normal. 

In conclusion, while the log-normal 

distribution provides a useful model for recovery 

times in different PDS, it is not without its 

limitations. It is important to consider the specific 

characteristics of each PDS and the types of faults 

that can occur when applying this model. Further 

research could explore other goodness-of-fit 

measures, such as AIC or BIC, to find distribution 

models that might provide a better fit for the recovery 

time data in cases where the data does not follow the 

log-normal distribution. 
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