VTT

Prospects of electricity and heat-only SMRs in the Baltic Region

Tomi J Lindroos – <u>Tomi.J.Lindroos@vtt.fi</u> Nelli Putkonen, Anni Niemi, Fares Alblouwy (VTT) Heikki Suikkanen (LUT)

08/11/2022 VTT – beyond the obvious

Baltic targets for 2030

Decarbonization

- Reducing total GHGs while maintaining LULUCF sinks
- National non-ETS target, noting that EU Commission suggested higher non-ETS target
- Increasing the share of renewable electricity, heat, and transport energy

Energy security

- Reduced imports by increasing domestic generation and production
- Increased interconnectivity and flexibility
- Long-term and short-term adequacy. Short-term particularly important with electricity.

Energy efficiency

 Reduced primary and final energy use with special emphasis on energy renovations

Markets, research, innovation, competitiveness

Large range of measures and targets

Baltic power system today

Wind

- Baltic countries have a high degree of interconnection (import capacity / generation capacity)
 - Estonia has been a net exporter of electricity on annual level. Lithuania a net importer
 - All Baltic countries have very high share of combined heat and power (CHP) generation.

Baltic Backbone model

- Modelling energy systems with improved sectoral integration at hourly level
- Range of technologies and policies compared with target indicators
- Deep dives to most promising options
- Open source model, download from <u>https://gitlab.vtt.fi/backbone/projects/fasten-model</u>

Baltic annual electricity supply towards 2030

- In FasTen 2030 reference scenario
 - Domestic generation increases in Latvia and Lithuania, but reduces in Estonia
 - Wind and solar replace fossil fuels
 - As a region, Baltic countries remain dependent of imports.
- 2030 reference system is based on national plans

Adding NuScale x4 to Baltic countries

- Assuming 4x NuScale modules
 - 4x 73 MWe_net
- Wind and solar replace most of the fossil fuels already in the reference scenario, additional nuclear
 - increases domestic generation
 - Slightly decreases CO₂ emissions
 - Sligthly reduces renewable energy share, but not amount

Profitability strongly depends on assumed fuel prices

- Almost equal profitability in each country due to electricity trade and typically the same marginal prices between Baltic countries
- Assuming historical (2015-2020) low prices result to low profitability around 5% with default costs
- Assuming current high prices (2021-2022) results to a very good profitability (15+% IRR) with default costs

* NuScale estimates that total investment costs would be around 3400 USD/kWe_gross (~3500 EUR/kWe_net with 31.10.2022 exchange rate)

VTT

Adding LDR-50 SMRs to Baltic countries

- Siting units to Baltic capitals
- Number of units by scaling output power (MW_DH) from 2x to 6x of the summer demand of each city
- First units replace natural gas in Tallinn and Riga. Replacing biomass from 3x-4x onwards.
- Already first units replacing biomass in Vilnius

Profitability strongly depends on assumed fuel prices and location

- Current high prices favour also a district heat reactor, but the profitability highly depends on the existing DH system and its units
- Good profitability (10+ % IRR) with 1000 EUR / kW_DH investment cost in Tallinn and Riga also with low prices

VTT

Prospects of electricity and heat-only SMRs in the Baltic Region

Tomi J Lindroos – <u>Tomi.J.Lindroos@vtt.fi</u> Nelli Putkonen, Anni Niemi, Fares Alblouwy (VTT) Heikki Suikkanen (LUT)

08/11/2022 VTT – beyond the obvious