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▪ Reactor structural materials selection historically:
▪ Mechanical requirements (strength, fracture toughness, fatigue)

▪ Fabricability (formability, weldability)

▪ Environmental stability (resistance to heat, corrosion, radiation)

▪ Suitability for non-destructive examination

▪ COST.

▪ Operational experience has resulted in some replacement choices.

▪ Lack of spare parts supply chain is leading to exploration of additive 

manufacturing as an alternative means of fabrication.
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▪ In nuclear reactor building boom of 70s and 80s, focus was on power 

production; driven by cost.

▪ But materials can activate under neutron irradiation!

▪ Impact of activation products on inspections and dismantling has 

given rise to e.g. replacement of cobalt-based alloys (Stellites).

▪ End-of-life decommissioning and ultimate disposal not typically a 

priority factor in design and materials selection process.

▪ Very few, if any, materials or mechanical engineers are familiar with 

nuclide evolution upon exposure to neutrons.
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▪ New boom in SMR and fusion start-ups backed by hedge fund investors 

creates pressure to produce “results” quickly.
▪ Designs are made quickly, and materials selection decisions may not be thought 

through very completely.

▪ In some cases, adequate materials may not even exist yet, and so alloy 

development is still underway.

▪ Central to the business case for most SMRs is mass production. 

▪ A “safety/security” feature of some SMRs is “replace rather than refuel.”

▪ Mass production and relatively short lifetimes means significant waste!

▪ Unlike an automobile, an SMR with activated materials cannot just go to 

the crusher!

▪ Engineers responsible for design and materials selection should also 

consider the ultimate radioactive waste resulting from their decisions!
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PWR- NuScale Power Module

- Westinghouse SMR 

- Rolls-Royce SMR

- Holtec SMR-160

- SMART



Decommissioning as a design consideration
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▪ The particular nuclides leading to activation of structural materials depend 

on the initial composition of the material.

▪ Alloy design involves major elements and minor elements. 

▪ “Trace” or “tramp” elements originating from ores are merely minimized to 

below some practical economic limit.

▪ Besides obvious choices like avoiding Co-based materials (most high-

entropy alloys!), attention needs to be paid to minor and trace elements.

▪ Concrete involves natural minerals in aggregate as well as cement, the 

compositions of which are very difficult to control in practice.
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▪ As materials activate during reactor operation, radionuclides produced can be divided into 

gamma active ”key” nuclides, and beta-active difficult-to-measure (DTM) nuclides. 

▪ Major γ-emitters can be easily measured through γ‐spectrometry (NDA technique). E.g. 

Co‐60, Ba‐133, Cs‐137, Eu‐152 and Eu-154. 

▪ Minor γ-emitters may require separation from major ones before measuring is possible.

▪ Minor γ-emitters and DTM nuclides need dedicated sample preparation and laborious 

destructive measurement techniques. E.g. C-14, Cl-36, Ni-63, etc.

▪ A nuclide vector describes the ratios of nuclide activities in a material. 
▪ Fixing the nuclide vector enables smooth waste package characterization when classifying waste 

(both operational and dismantling)

▪ A nuclide vector is not constant in time; nuclear decay changes the ratios.
▪ In old samples, most gammas have decayed, but DTM nuclide activities may be almost unchanged. 

▪ High or low gamma dose rate does not directly correspond to long-term safety in final disposal, but 

DTM activity does. 

Concepts: key-nuclide, DTM nuclide, 
nuclide vectors



VTT – beyond the obvious 8

▪ Nuclide-wise activities only provide a source term that is 

used to estimate the long-term safety of waste final

disposal. 

▪ Other things to consider are e.g. leaching rate, migration, 

exposure and radiotoxicity

▪ In addition, the chemical behaviour and long-term

effects in final disposal conditions need to be taken into 

account. 

▪ Safe final disposal is dependent on other nuclides than

radiation safety during dismantling!
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Main nuclides in activated structural materials

Isotope Emmission

Half-life, 

years A2 (Bq)

Relative proportions of nuclides in each

 material type, % ( ≠ absolute amount!)
RPV Austenitic SS Ni-base alloy Zr-alloy CuCrZr

Co-58 gamma 0,20 1,0E+12 0-5 <0,1

Co-60 gamma 5,30 4,0E+11 1-12 38-47 7 <0,1 100

Fe-55 beta 2,68 4,0E+13 84 49-56 40 58

Fe-59 gamma 0,12 9,0E+11 0-8 <0,1 <0,1

Mn-54 gamma 0,85 1,0E+12 0-5 <0,1 <0,1 <0,1

Nb-93m beta 16,13 3,0E+13 <0,1 1,6 26

Nb-94 gamma 20300 7,0E+11 <0,1 <0,1

Ni-59 beta 108000 1,0E+99 0,4 <0,1

Ni-63 beta 100 3,0E+13 <0,1 50 6

Sb-125 both 2,8 1,0E+12 7

Sn-119m gamma 0,8 3,0E+13 1

Ta-182 gamma 0,31 5,0E+11 <0,1

Te-125m gamma 0,16 9,0E+11 2

Zr-93 both 1600000 1,0E+99 <0,1
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Decay calculations of primary nuclides
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Decay calculations of primary nuclides
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Calculation of nuclide vectors
Theoretical calculations for minor nuclides

▪ Theoretical calculations for gamma and beta nuclides can be made based on 

material composition and reactor irradiation parameters.

▪ Decay calculations can be made for different “cooling” periods.

▪ Gamma spectrometer results can be used to “calibrate” the calculations for 

particular materials specimens.
▪ As time marches on, nuclide decay constantly changes relative amounts of nuclides in a 

particular material

▪ For minor nuclides, accuracy may not be essential, but long-lived nuclides, even in 

small quantities, can become a disposal issue.



Alloying elements ≠ most important nuclides!
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Steel type / 

element (w%) C Si Mn P S Ni Cr Mo V Cu Co Nb N Fe Other

PWR RPV

SA 508 Cl 2

0 - 

0.25

0 - 

0.4

0.5 - 

1.5

0 - 

0.025

0 - 

0.025

0.4 - 

1.0

0 –

0.45

0.45 - 

0.70

0 - 

0.05

0 – 

0.2

0 - 

0.02

0 - 

0.01

Bal. + limits on Ca, 

B, Ti and Al

Austenitic SS 

316L

0 - 

0.03

0 - 

1.00

0 - 

2.00

0 - 

0.045

0 - 

0.015

10.00 - 

13.00

16.50 - 

18.50

2.00 - 

2.50

0 - 

0.02

0 - 

0.10

Bal.

Ni-based

 Alloy 718 

0 - 

0.08

0 - 

0.35

0 - 

0.35

0 - 

0.015

0 - 

0.015

50.00 - 

55.00

17.00 - 

21.00

2.80 - 

3.30

0 – 

0.3

0 - 

1.00

4.75 - 

5.50

Bal. + limits on Ti, 

Al, B

CuCrZr 0.8 Bal. Zr: 0.08

Steel type / 

element (w%)
Ag Sb Sn Ho Cl Se Zr Zn Pb Al Li Ca K Ba Eu Cs Sm

PWR RPV

SA 508 Cl 2
0,002 0,004 0,009 0,001 0,0001 0,0009 0,0001 - - - 0,00003 0,0019 0,0003 0,10 0,000002 0,00007 0,00002

Austenitic SS 

316L
0,0002 0,004 0,009 0,001 0,0001 0,0035 0,0001 - - - 0,00003 0,0019 0,0003 0,10 0,000002 0,00007 0,00002

Ni-based

 Alloy 718 
- - - - - - 0,0001 - - - - - - - - - -

CuCrZr
- - 0,002 - - - 0,074 0,038 0,001 0,003 - - - - - - -

Metallurgist’s perspective

Radiochemist’s additions!
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Calculation of nuclide vectors
Theoretical calculations for minor nuclides

▪ Decommissioning of VTT’s FiR1 reactor and structural materials hot cell 

involved calculating “representative nuclide vectors” for the resulting waste.

▪ Sensitivity study was carried out by varying reactor exposure and subsequent 

decay scenarios, particularly for trace nuclides.
▪ Amount of long-lived nuclides in the vector is mainly a function of the initial irradiation 

conditions, with little change in 30 years of decay.

▪ Amount of long-lived trace nuclides is still overall low in magnitude, but calculation error 

is eclipsed by uncertainty in quantity of parent element.

▪ Similar exercise described in NUREG/CR-3475, carried out by PNNL for NRC 

in 1984. Material activation depends greatly on
▪ Reactor type (i.e. neutronics, temperature)

▪ Location in the reactor core.

▪ SMR designs and material choices are numerous! 
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Calculation of nuclide vectors
Theoretical calculations for minor nuclides in RPV steel

Isotope

NUREG/

CR-3474 

PWR E.O.L.,

 Bq/g

PWR

10y irr +

15y cool,

Bq/g

NUREG/

CR-3474 

BWR E.O.L.,

Bq/g

BWR

20y irr +

20y cool,

Bq/g

VVER

5y irr +

35y cool, 

Bq/g

C-14 2,70E+05 4,45E+03 1,81E+02 8,89E+03 2,22E+03

Cl-36 5,92E+03 1,15E+00 3,70E+00 2,29E+00 5,73E-01

Co-60 1,18E+09 7,43E+05 8,88E+05 1,71E+05 2,99E+04

Fe-55 2,18E+09 2,49E+06 1,52E+06 7,53E+05 1,20E+04

Mn-54 3,07E+07 3,94E+00 7,40E+04 6,81E-02 0,00E+00

Mo-93 2,85E+03 5,11E+01 2,85E+00 1,49E+02 3,12E+01

Nb-93m 2,41E+01 8,79E+01 2,05E+01

Nb-94 2,33E+03 1,31E+01 1,81E+00 2,62E+01 6,55E+00

Ni-59 1,59E+06 3,95E+03 1,18E+03 3,73E+03 2,08E+02

Ni-63 2,11E+08 4,22E+05 1,48E+05 3,72E+05 1,97E+04

Ag-108m 7,40E+02 7,31E+01 5,55E-01 1,38E+02 3,32E+01
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Calculation of nuclide vectors
Theretical calculations for minor nuclides in NPP internals

Isotope

NUREG/

CR-3474 

PWR SS 

Shroud E.O.L., 

Bq/g

PWR

Type 304 

Stainless steel,

Bq/g

PWR 

Type 718

Nickle alloy,

 Bq/g

Generic SS

5y irr + 

15y cool,

Bq/g

NUREG/

CR-3474

 BWR SS 

cladding E.O.L.,

 Bq/g

C-14 9,25E+05 4,67E+05 2,68E+04 2,23E+03 1,81E+02

Cl-36 1,89E+04 9,53E+03 5,46E+02 5,74E-01 3,70E+00

Co-60 4,81E+09 2,43E+09 1,39E+08 1,22E+06 8,88E+05

Fe-55 7,77E+09 2,57E+09 1,24E+09 1,35E+06 1,52E+06

Mn-54 2,41E+08 5,43E+07 1,38E+07 2,69E+00 7,40E+04

Mo-93 3,48E+04 1,76E+04 1,01E+03 1,62E+01 2,85E+00

Nb-93m 1,46E+06 2,59E+07 7,30E+00

Nb-94 1,48E+04 5,56E+05 1,46E+01 1,81E+00

Ni-59 4,07E+06 1,91E+05 6,21E+06 1,60E+04 1,18E+03

Ni-63 6,66E+08 1,77E+08 7,22E+08 1,74E+06 1,48E+05

Ag-108m 3,70E+03 1,87E+03 1,07E+02 3,71E+00 5,55E-01
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▪ This table considers only activation, not other sources of contamination. This is a 

simplified summary for metallic waste. List of nuclides is not universal for all waste types.

▪ Minor contribution: Co-60, Fe-55, Ca-41

Radionuclide Activating

element

Contribution

C-14 N, C Significant

Ca-41 Ca Minor

Cl-36 Cl Significant

Ni-59 Ni, Co Significant

Ag-108m Ag Average

Ho-166m Ho Minor

Examples of ”important” nuclides in waste

Radionuclide Activating

element

Contribution

Mo-93 Mo Average

Nb-93m Nb, Mo Average

Ni-63 Ni Average

Se-79 Fis. Prod. Average

Tc-99 Mo, Fis. Prod. Average
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▪ Many companies are offering SMR and fusion reactor designs focused

primarily on commercial energy production, driven by economics.

▪ Mass production is a commercial fundamental particularly for SMRs.

▪ Decommissioning experience has revealed that the long-term safety in the

disposal of activated reactor materials may hinge more on minor and trace

elements than on the obvious activation nuclides like Co-60 and Fe-55.

▪ Theoretical activation calculations can be used to identify problematic

elements, but require knowledge of particular reactor operating conditions

(neutronics) and dimensions, of which there are various in SMR sector!

▪ Many problematic elements are not currently typically controlled in 

commercial materials fabrication process, nor even economically possible

to control!

Summary



Recommendations

VTT – beyond the obvious 19

▪ Safety in long-term final disposal can be increased by limiting the amount of 

activating elements in the materials during the construction phase. 

▪ More attention should be paid already in the materials selection and 

manufacturing process phases to minimize inclusion of problematic elements.

▪ If this is not possible, maintain the knowledge of detailed compositions including

the nuclides that may not affect to mechanical properties. 
▪ This data is significantly easier (and cheaper) to collect prior to starting the operation. 

Saving inactive reference samples of all potentially activating materials is beneficial. 

▪ Lesson learned from the FiR1 decommissioning project: Old facilities typically have

information on mechnical properties and old documentation is seriously inadequate or can

even contains false data. 



Thank you! vttresearch.com
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