VTT

Intercalibration Exercise for Difficult-To-Measure Radionuclides in Activated Steel

Anumaija Leskinen SYP2019 October 2019

29/10/2019 VTT – beyond the obvious

Content

- Context
- Phases of the project
 - 1st phase Preparation
 - 2nd phase Radiochemical analysis
 - 3rd phase Methodology and analysis of the results
- Conclusions

Context

Context

- Difficult-to-measure (DTM) vs easy-to-measure radionuclides
 - Term used in the decommissioning field
 - What makes them difficult?
 - Formation of scaling factors
- Lack of reference materials
- Validation of radiochemical analysis via intercalibration exercise
- NKS platform
 - Nordic countries have decommissioning projects
 - "DTM Decom" project for DTM analysis in activated steel

Phases of the project

29/10/2019 VTT – beyond the obvious

1st phase - preparation

Participants

- Finland VTT (coordinator), Fortum power and heat, Helsinki University
- Sweden Cyclife
- Denmark Danish technical University
- Norway IFE Halden and Kjeller
- France CEA Saclay (self funded)
- Online kick-off meeting in February
 - Material to be studied activated reactor pressure vessel steel
 - Each participant to receive 2-3 samples
 - Main DTMs of interest ⁵⁵Fe and ⁶³Ni
 - Optional ¹⁴C, ⁵⁹Ni, (⁶⁰Co)

1st phase - preparation

- Sample preparation
 - One RPV steel bar (10 cm x 1 cm x 1 cm) cut to ~0.2 mm slices
 - Oxide layer removal, weight after air drying
 - Homogeneity studies using gamma spectrometry (ISOCS)
 - Sample holder
 - 3 cm above detector to reduce coincidence
 - 1.8% RSD% of Co-60 in 20 sample measurements → homogenous
- Sending of the samples
 - 2-3 samples to each partner
 - Sending as UN2910 shipment
 - Participant received the packages in May 2019
 - Radiochemical analysis time May-September 2019

Main steps of the radiochemical analysis of ⁵⁵Fe and ⁶³Ni

Step 1 - Decomposition of the solid

- Main steps of the radiochemical analysis of ⁵⁵Fe and ⁶³Ni
- **Step 2 separation of analytes**

Solution	 Small fraction (0.3 ml to 1 ml) of the acid digestion solution Whole solution 			
Carriers	 Some added carriers Some added hold back carriers 			
Separation via hydroxide precipitatio	 NaOH or NH₄OH to precipitate Ni and Fe (or only Fe) Separation of Fe and Ni using anion exchange resin (AG 1x4 resin) Separation of Fe and Ni using anion exchange resin (Dowex 1x4) in 9:1 acetone : 6 M HCl mixture (removal of Co) 			
Removal of silver and separation via TRU resin	 solution to dryness and diluted with HNO₃ silver precipitated as AgCl with 0,1M HCl Fe and Ni separated using TRU resin 			

Main steps of the radiochemical analysis of ⁵⁵Fe and ⁶³Ni

Main steps of the radiochemical analysis of ⁵⁵Fe and ⁶³Ni

Step 4 - Measurements

LSC fractions	 Measured using LSC Standard solutions for quench correction or TDCR technique Ultima Gold, HiSafe Interference of Co-60 in Ni-63 fraction 			
Yield fractions	 Measured using ICP-MS, ICP-OES, MP-AES Ni yield by spiking a replicate Fe yield estimated to be 90% 			
Sample Spectrum				

3rd phase – methodology

- Analysis based on ISO 13528 standard
- Variety of scoring strategies most often participant's deviation from an assigned value is compared
- Assigned value x_{pt}
 - Use of real material and not a reference material with assigned values for analytes
 - Assigned value derived from the participant's results
 - Robust mean and standard deviation using Algorithm A
 - Transforms the original data by a process called winsorisation to provide an alternative estimators of mean and standard deviation
 - Expected proportion of outliers is below 20%
- Comparison of performance using z score

Z score	Analysis result
z ≤ 2.0	Acceptable
2.0 < z < 3.0	Warning signal
z ≥ 3.0	Unacceptable

3 rd p 55 ⁵ Fe	has result	e -	- a	na	aly	/S	is	of	t	he	re	es	ult	ts	
13 eAssi	entries a gned va	analy lue:	/sed 82.	0 ±	29.4	1 kB	q/g	(2o))						
	160000				Fe-5 and a	5 resu assign	ults in ed val	activa ue wit	ted st h 2σ	teel sa uncert	mples ainties	5			
	140000										Ţ		T	I	
	120000 T T T T T T T T T T T T T T T T T														
	00008 Fe-55 Bq			Ţ				Ī			t	t	t	t	
	40000				-		-			-	-				
	20000	I	I												
		14	14	7	11	9	12	¹⁰ Sa	3 ample	17 e #	18	16	2	1	

Sample #	Z score
1	3.7
2	2.8
3	0.0
7	1.0
9	0.7
10	0.5
11	0.7
12	0.6
14	4.4
14	4.5
16	2.6
17	1.1
18	2.3
Z score	Analysis result

3rd phase – analysis of the results

- ⁶³Ni results
 - 10 entries analysed
 - Assigned value: $87.1 \pm 22.4 \text{ kBq/g} (2\sigma)$

Sample #	Z score
3	0.6
7	0.1
9	3.6
11	5.2
12	0.2
14	1.5
14	1.2
16	0.6
17	3.1
18	1.9

Z score	Analysis result
z ≤ 2.0	Acceptable
2.0 < z < 3.0	Warning signal
z ≥ 3.0	Unacceptable

Conclusions

29/10/2019 VTT – beyond the obvious

Conclusions

- Preparatory phase needs to be carefully designed
 - DTMs present
 - Sending of the sample
- Radiochemical analyses are similar with small differences
- Assigned value
 - all results were taken into the robust mean analysis
 - possible to make a sub selection of the results would the results differ?
- Results will be published in NKS website DTM Decom final report and as a peer reviewed publication
- DTM Decom II on activated concrete on 2020 applied

Acknowledgements and references

Funding

- Nordic Nuclear Safety Research NKS
- Finnish research program on nuclear waste management KYT
- Radioanalytical work was carried out in Centre for Nuclear Safety
- Radiochemical analysis references
- Gautier, C. et al., (2015) A comparative study using liquid scintillation counting to determine ⁶³Ni in low and intermediate level radioactive waste, Journal of Radioanalytical and Nuclear Chemistry, 308:1
- Hazan, I., Korkisch, J. (1965) Anion-exchange separation of iron, cobalt and nickel. Analytica Chimica Acta, 32:46-51.
- Hou, X.L. (2005) Determination of ¹⁴C and ³H in Reactor Graphite and Concrete for Decommission, Appl. Radiat. Isotop., 62:871-882
- Hou, X. NKS-B RadWorkshop Risø October 2018, Analytical procedure for simultaneous determination of ⁶³Ni and ⁵⁵Fe
- Hou, X., et al. (2005) Determination of ⁶³Ni and ⁵⁵Fe in nuclear waste samples using radiochemical separation and liquid scintillation counting, Anal. Chim. Acta 535(1-2): 297-307.
- Hou, X.L., Østergaard L.F., Nielsen S.P. (2005) Determination of ⁶³Ni and ⁵⁵Fe in nuclear waste and environmental samples, Anal. Chim. Acta, 535:297-307
- Hou, X.L., Østergaard L.F., Nielsen S.P. (2007). Determination of ³⁶Cl in Nuclear Waste from Reactor Decommissioning, Anal. Chem., 79:3126-3134
- <u>Leskinen, A</u>., Salminen-Paatero, S., Räty, A., Tanhua-Tyrkkö, M., Iso-Markku, T., Puukko, E. (accepted October 2019)
 Determination of ¹⁴C, ⁵⁵Fe, ⁶³Ni and gamma emitters in activated RPV steel samples a comparison between calculations and experimental analysis, Journal of Radioanalytical and Nuclear Chemistry

beyond the obvious

Anumaija Leskinen Anumaija.Leskinen@vtt.fi www.vtt.fi

29/10/2019