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VTT is developing a new framework for

reactor modeling

= Kraken is a new computational framework

for coupled calculations
« Consists of modular solvers of ,
and thermal hydraulics
- Data transfer between the solvers is
committed with a

= Current work includes coupled
calculations with Kraken and system level
codes, e.g. TRACE
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Ants — nodal neutronics solver

= Developed at VTT since 2017

= Object: Reduced-order core-level routine
calculations with low computational cost

= Steady-state calculations have been

verified for
- Different geometries (rectangular, hexagonal
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- Different energy group structures (two-group [

NPP interface

and multi-group)

= Time-dependent model still required
verification




Nodal neutronics

= High-fidelity heterogeneous methods are not feasible for routine calculations -
reduced-order methods

= Nodal methods are based on averaging fuel assemblies to homogeneous blocks,
nodes

= The neutron flux is solved separately within each node and the node-wise flux
solutions are coupled together with boundary conditions
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized

with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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New neutrons via
scattering




Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized

with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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Neutron diffusion equation

= The behaviour of neutrons in a reactor core is often characterized
with the time-dependent neutron diffusion equation:
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Neutron diffusion equation
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= Ants uses AFEN and FENM methods to solve the time-dependent
diffusion equation in each node separately






All verification cases in a nutshell

1.

One-point kinetics problem:

One-point one-group core with no delayed neutrons with a step absorption cross section change.

Analytical solution available for time-integration method verification

TWIGL problem:
2D core with a ramp and a step change of absorption cross section.

LMW problem:
3D simplified PWR core with moderate control rod movements.

AER-DYN-001 problem:
Rod ejection transient with SCRAM in a VVER-440 hexagonal core.

AER-DYN-002 problem:
Rod ejection transient with Doppler feedback effect in a VVER-440 hexagonal core.

LRA problem:
Rod drop transientin a BWR core with a simple Doppler feedback mechanism.
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The LMW problem geometry e o
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The LMW transient problem

= Includes movements of two control rod groups
= At 0 s, control rod group 1 is withdrawn with 3 cm/s ZZ

velocity
o Control rod group 1
= At 7.5 s, control rod group 2 is inserted 1
at 3 cm/s velocity and stopped at 60 cm , 2
elevation from the bottom of the core PR e

2 Control rod group 2




The LMW initial power distribution
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The LMW transient results
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The LMW final power distribution

Ants power distribution
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All verification cases in a nutshell

1. One-point kinetics problem:
+ One-point one-group core with no delayed neutrons with a step absorption cross section change.
+ Analytical solution available for time-integration method verification

2.  TWIGL problem:

+ 2D core with a ramp and a step change of absorption cross section.
3. LMW problem:

+ 3D simplified PWR core with moderate control rod movements.
4.  AER-DYN-001 problem:

* Rod ejection transient with SCRAM in a VVER-440 hexagonal core.

5 AER- DYN 002 problem:
eiection transient with Doppler feedback effect in a VVER-440 hexagonal core.




Fuel materials 1, 2 and 4

The LRA BWR rod-drop problem ool rod material
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The LRA BWR rod-drop problem

= Rod indicated by CR drops with 150 cm/s velocity ”’5
= Fuel temperature obeys equation 0

8T’“
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= Doppler feedback effect based on fuel temperature changes is given as

SEL(t) =5 [1 + 74 (\/Tfk(t) — \/TfO)]



The LRA problem —initial power distribution

0.40
2.00
0.30
: 0.20 55
1.50 =
3 0.10
= ] ] g
g 0.00 &
l.DUE <
= 0.10 &
= 3
0.50 -0.20%
-0.30
0.00 -0.40
Ants power distribution Relative difference between

Ants and QUANDRY

07/11/2022 VTT - beyond the obvious



The LRA
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The LRA problem - final power distribution
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The LRA problem - transient

Code Ants QUANDRY  CONQUEST "

Mesh size (cm?) 15x15x15  15(30)x15(30)x30  15x15x30 T —

Number of time steps 410 410 410 §

Time at first peak (s) 0.907 0.907 0.905 P

Power at first peak (W /cm?) 5550 5739 5390 51072

Time at first minimum (s) 1.00 0.988 ~1.0 g

Power at first minimum (W /cm?) 120 109 ~100 S

Time at second peak (s) 1.42 1.44 1.44 | Aok

Power at second peak (W/cm?) 353 412 431 106 b 04 QUAJNDRY
00 05 10 15 20 25 30

Time (s)
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Ants performs well in the transient
problems considered in this work
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Summary

= The Ants time-dependent methodology was verified with multiple different
transient scenarios

= The verification cases included different geometries, transient events and
levels of feedback effects. However, all cases included two-group energy
structure

= The Ants results showed good agreement with other nodal solutions

= Multi-group time-dependent capability is still to be tested with, e.g., the
PWR MOX/UO2 Core Transient Benchmark

= Current work includes coupled time-dependent calculation with other
Kraken-solvers
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