IMPROVED HOT-PARTICLE DETECTION AND ISOTOPE SEPARATION WITH REAL-TIME AUTORADIOGRAPHY

Joyce W. L. Ang^{1,2}, Arthur Bongrand^{3,4}, Samuel Duval³, Jérôme Donnard³, Risto Koivula¹, Marja Siitari-Kauppi¹, Gareth T. W. Law¹

¹ Radiochemistry Unit, Department of Chemistry, The University of Helsinki, Helsinki 00014, Finland
 ² Singapore Nuclear Safety and Research Initiative, National University of Singapore, 138602, Singapore
 ³ AI4R, 2 rue Alfred Kastler, 44307, Nantes, France
 ⁴ IMT Atlantique, Nantes Université, CNRS, SUBATECH, F-44000 Nantes, France

NUCLEAR SCIENCE AND TECHNOLOGY SYMPOSIUM (SYP)

'HOT' PARTICLES

- Radioactive
- Microns size range
- Sources:
 - Illicit activities
 - Nuclear accidents
 - Weapons
 - Mining sites
 - Nuclear waste disposal

Fig 1. Hot particles from (a) Chernobyl, (b) Fukushima Daiichi accident. (c) Fukushima Daiichi nuclear power plant during the nuclear meltdown. Image (a) adapted from DOI: 10.1016/j.jnucmat.2018.09.003; Image (b) adapted from DOI: 10.1016/j.scitotenv.2020.140539; Image (c) obtained from: https://www.scientificamerican.com/article/radioactive-glass-beads-may-tell-the-terrible-tale-of-how-the-fukushima-meltdown-unfolded/

'Hot' Particles

BeaQuant

Sample Prep

Detection

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

3

STUDYING 'HOT' PARTICLES

- Why study them
 - Fate of the particles

Fig 2. Classification of different properties that could be studied.

AUTORADIOGRAPHY OF 'HOT' PARTICLES Sieving Sampling date Autoradiography : 2011 summer If suspension □ : 3/15 – 16/2012 △ : 10/25 - 26/2012 contains Add droplets of water to 'hot' spots ▽: 12/20/2012 significant amount of soil Take up the water with suspensions O: 7/29/2017 DNPP Number of CsMPs (particles/g) Carbon tape on 'hot' spots 300-134+137Cs (Bq/m? 100-300 radioactivity as o Dec. 28, 2012 10-20 1000k - 3000k Cut carbon tape into smaller pieces with a blade 600k - 1000k 5-10 300k - 600k 0-5 100k - 300k 60k - 100k 60 km Iwaki 30k -60k 10k -30k Autoradiography and SEM Fig 3. Map of ¹³⁴⁺¹³⁷Cs radioactivity distribution Fig 4. Autoradiograph of hot and number of CsMPs in sample sites in Japan. particles in filters Fig 5. Particle isolation process. Map adapted from: DOI 10.1016/j.chemosphere.2019.125019 Image adapted from: DOI 10.1038/srep02554 Sample Prep **BeaQuant** Detection 'Hot' Particles **HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET**

UNIVERSITY OF HELSINKI

5

space 1

(400 µm)

Drift space

(1 cm)

space 2

(150 µm)

HELSINGIN YLIOPISTO

HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

INTRODUCING BEAQUANT

ADVANTAGES OF BEAQUANT

BeaQuant	Phosphor Screen Autoradiography
Real-time→ Faster accident response	Not real-time
Possibility of performing spectrometry	Possible (but tedious) for differentiating alpha vs beta
Direct measurement	2-step approach
	$\begin{array}{c} \text{Exposure} \longrightarrow \text{Scanning} \\ \hline \\ $
Fig 8. Sample loaded onto micromesh.	Fig 9. Series of steps from exposing sample on imaging plate to loading imaging plate into scanner.
'Hot' Particles BeaQuant	Sample Prep Detection
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI	SYP 2022 / Joyce Ang 09/11/2022 13

UNIVERSITY OF HELSINKI

ADVANTAGES OF BEAQUANT

BeaQuant	Phosphor Screen Autoradiography		
Real-time \rightarrow Faster accident response	Not real-time		
Possibility of performing spectrometry	Possible (but tedious) for differentiating alpha vs beta		
Image: contract of the sector of the secto	Glass slide Sample α (⁴ ₂ He) + β^- Imaging plate \rightarrow Detects: α (⁴ ₂ He) + β^- Glass slide Sample α (⁴ ₂ He) + β^- Absorber \rightarrow Absorbs: α Imaging plate \rightarrow Detects: β^- Fig 11. Separation of α from β using phosphor screen autoradiography.		
'Hot' Particles BeaQuant	Sample Prep Detection		
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET			

TOPICS OF CONSIDERATION

- Sample preparation
 - Methodology
 - Sample thickness
- Detection
 - Cs calibration
 - Deconvolution by energy spectra
 - Spatial resolution
 - Artefact contribution

'Hot' Particles

BeaQuant

Sample Prep

Detection

- Cesium: Cs-134, Cs-137
- Form
 - Simple 'massless' samples
 - Particulate matrix
 - Sediments

'Hot' Particles

BeaQuant

Sample Prep

Detection

PREPARING SIMPLE 'MASSLESS' SAMPLES

- 'Massless' samples
 - Deposition using evaporation technique
- Varying activity concentration
 - Serial dilution
- Wrapped with 3-microns mylar film

Fig 12. Example of a thin 'massless' sample and their autoradiograph from BeaQuant.

'Hot' Particles

BeaQuant

Sample Prep

Detection

SYP 2022 / Joyce Ang

UNIVERSITY OF HELSINKI

PREPARING RESIN EMBEDDED SAMPLES

- Resin embedded with epoxy resin (Araldite[®] M and Ren[™] HY956)
- Sawed to thin slices, adhered onto glass slides
- Polished (80, 500, 1200 and 2000 grit size)

Fig 17. Example images of resin embedded samples.

- Study how sample thickness affects signal
- GEANT4 simulation

'Hot' Particles

BeaQuant

Sample Prep

a

b

Detection

Particle on

surface

Particle 100 microns away

- Study how sample thickness affects signal
- GEANT4 simulation

Fig 19. GEANT4 simulation scenario for different sample particle depth.

- Study how sample thickness affects signal
- GEANT4 simulation

UNIVERSITY OF HELSINKI

- Samples of different thicknesses
 - 10s of microns, 100s of microns, 1 mm

Table 2. Full-width at half maximum and background baseline fordifferent sample thicknesses.

Fig 21. Comparison of autoradiograph from a thin sample and a thick sample.

Sample Prep

SYP 2022 / Joyce Ang

Detection

X-RAY CT – IDENTIFYING 4 PARTICLES

Fig 22. Autoradiograph, microscope, and X-ray CT images.

Table 3. Particle sizes and depth, obtained from X-ray CT.

Particle	Depth (µm)	Semi-axis A (µm)	Semi-axis B (µm)	Semi-axis C (µm)
P1	167	140	175	129
P2	28	29	33	28
P3	161	94	63	82
P4	240	126	212	210

'Hot' Particles

Sample Prep

Detection

X-RAY CT – SIMULATION VS BEAQUANT

Peak broadening

Background contribution

'Hot' Particles

SPATIAL RESOLUTION STUDIES

- Broadening of peaks due to detector
- Applied Gaussian blurring to GEANT4 simulation
 - CERN ROOT (version 6.19/02) •
- Quantify spatial resolution

Fig 24. X distributions before and after gaussian blurring of 20 and 50 microns.

ARTEFACT IDENTIFICATION

- Library of data from hot particle and artefact contribution
- BeaQuant ability to identify particles in noisy background
- Improving the sample preparation

Table 4. Types of sediment and their Cs-134 activity concentration.

Туре	Material	Size Fraction (µm)	Activity Concentration (MBq/g)
Particle	Copper HCF	< 25	55
Sediment	Weathered biotite	50 – 100	5
	Illite-smectite mixed layer (70/30)	50 – 100	0.5
	Quartz	50 – 100	0.5

Fig 26. Autoradiograph of sediment sample (Cs particles in a lower radioactivity Cs sediments).

۲

ACKNOWLEDGEMENTS

Singapore Nuclear Research and Safety Initiative

- Singapore Nuclear Research & Safety Initiative
- Jenny and Antti Wihuri Foundation
- Supervisors:

Funders:

- Gareth Law (Helsinki: Radionuclide Reaction and Fate)
- Marja Siitari-Kauppi (Helsinki: Nuclear Waste Disposal)
- Collaborators:
 - Risto Koivula (Helsinki: Ion Exchange Group)
 - Team in AI4R (Collaborators from Nantes, France)
 - Joni Parkkonen (Collaborator from the University of Jyväskylä)

University of Helsinki, Radiochemistry Unit (taken in 2018)

ai4r, the company which commercialised BeaQuant™ (taken in 2022)