

NUCLEAR SCIENCE AND TECHNOLOGY SYMPOSIUM 2019

Emergency treatment for external radionuclides contamination

Helsinki, Marina Congress Center

October 30-31, 2019

What is an external contamination ?

Fast diffusion even through intact skin

De Rey *et al.*, Environ. Res., 1983; 30(2):440-91 Petitot *et al.*, Can. J. Physiol. Pharmacol., 2004; 82(2):133-9

Toxicity on retention organs and skin

Lopez *et al*, Health Physics, 2000; 78(4):434-7 Kathren and Burklin, Health Physics, 2004; 94(2):170-9 Brugge *et al*, Rev. Environ. Health, 2005; 20(3):177-93

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination
- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

4

In the early 1990s and 2000s Knowledge about calixarene family

 The calixarenes have strong affinity for actinides due to complexing function

+ geometry

Fig. 1. Chemical structure of 1,3,5-OCH3-2,4,6-OCH2COOH-*p*-*tert*butylcalix[6]arene.

- Use in **radiotoxicology** : analyze/extract actinides from urine, drinking water, etc.
- In 1990s calixarene were considered for <u>internal decontamination</u> from uranium.
 But two sulfonic calixarenes showed hepatotoxicity.

→ The use of calixarenes in decontamination treatments was ruled out for a long time.

2006-2016 IRSN worked on a treatment for external contamination

- No efficient treatment for uranium internal contamination without toxicity
- What about a treatment with calixarenes for external contamination ?

The main challenge was to find a galenic form that :

- \rightarrow immobilizes the calixarene in the topical form
- → prevents the absorption of the topical form with the trapped radionuclides
- \rightarrow and allows the **maximum amount of uranium** to be trapped.

2006-2016 IRSN worked on a treatment for external contamination

- > The calixarenes used are liposoluble molecules
- Developing an oil-in-water emulsion should locate the calixarene at the surface of the oily droplets

WHAT IS AN OIL-IN-WATER EMULSION ?

2006-2016 IRSN worked on a treatment for external contamination

- The calixarenes used are liposoluble molecules
- Developing an oil-in-water emulsion should locate the calixarene at the surface of the oily droplets
- ➤ The droplets' surface makes the calixarene more available to chelate radionuclides → need to decrease the droplet size to increase the total surface.

WHAT IS AN OIL-IN-WATER EMULSION ?

2006-2016 IRSN worked on a treatment for external contamination

- > The calixarenes used are liposoluble molecules
- Developing an oil-in-water emulsion should locate the calixarene at the surface of the oily droplets
- ➤ The droplets' surface makes the calixarene more available to chelate radionuclides → need to decrease the droplet size to increase the total surface.
- ➤ The droplets (with calixarene) must be too large to be absorbed by the skin. → do not decrease too much the droplet size.
- > The contamination would not be absorbed anymore

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination
- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination
- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination
- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

GUIDELINES

INTERNATIONAL GUIDELINES

THE ACTUAL GUIDELINES FOR DECONTAMINATION ON HEALTHY SKIN:

- Water + mild detergent = soapy water or hydrogen peroxide 3% (H₂O₂) or sodium hypochlorite 1% (bleach) or potassium permanganate 5% (KMnO₄)
- 2. Anti-inflammatory pomade (in case of fixed contaminations)

THE CEVIDRA CALIXARENE CREAM

A CHELATING AND CLEANSING EMULSION

<u>3 major modes of action :</u>

- Chelation (really strong bond) from the carboxylic calixarene for cationic radionuclides
 - 2) Several capabilities of affinity (hydrogen bonds, hydrophobic interactions, electrostatic interactions)

3) Cleansing action, removes the contaminants

which are not chelated

Enlarge the spectrum of efficacy towards **non-cationic radionuclides**

APPLICATION OF THE DECONTAMINATING CREAM

→ The modes of action :

- Retain the contamination into the cream
- Reduce the risk of cross contamination.

\rightarrow The viscosity and the removal with compresses :

- Avoid flowing of contamination on non-contaminated areas
- Avoid dissemination
- Reduce the risk of cross contamination.
- Reduce the volume of contaminated waste

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination

- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination
- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

- Avoid the percutaneous penetration of radionuclides
- Decrease the use of treatment for internal contamination
- Avoid dissemination / cross contamination
- **Prevent inhalation/ingestion** of radionuclides from the cutaneous contamination (resuspension etc.)

Current knowledge about external decontamination with carboxylic calixarene

- Since July 2018, a specific treatment does exist as a medical device
- The **spectrum is large** and the proven efficacy is not limited to actinides (**uranium, plutonium, americium, thorium**) :
 - → Chelation on : cobalt, antimony, silver, zirconium, manganese, cesium, strontium
 - \rightarrow Cleansing action on : all other radionuclides

IN VITRO - SCIENTIFIC STUDIES

Two recent studies: **IRS**

Mix for study $n^{\circ}1 = \mathbf{U} + \mathbf{Cs} + \mathbf{Sr} + \mathbf{Co}$

Mix for study $n^{\circ}2 = Mn + Zr + Ag + Sb + Pu$

- Studies were carried out with stable isotopes when possible. As a reminder, the isotopes of the same element have identical chemical properties but different physical properties (stable or radioactive in particular).
 - It does not influence the chelation.

IN VITRO - SCIENTIFIC STUDIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

IN VIVO - REAL CASES OF DECONTAMINATION IN NUCLEAR FACILITIES

→ The cream led to a complete decontamination without associated treatment in 100% of the cases.

BIBLIOGRAPHY

- Bouvier-Capely, C., Manoury, A., Legrand, A., Bonthonneau, J. P., Cuenot, F. et Rebière, F. (2009). "The use of calix[6]arene molecules for actinides analysis in urine and drinking water: An alternative to current procedures". Journal of Radioanalytical and Nuclear Chemistry, 282(2), 611-615
- Mekki, S., Bouvier-Capely, C., Jalouali, R. et Rebière, F. (2010). "The extraction of thorium by calix[6]arene columns for urine analysis ". Radiation Protection Dosimetry, 144(1-4), 330-334
- Spagnul, A., Bouvier-Capely, C., Phan, G., Rebière, F. et Fattal, E. (2010). "Calixarene-entrapped nanoemulsion for uranium extraction from contaminated solutions". Journal of Pharmaceutical Sciences, 99(3), 1375-1383
- Spagnul, A., Bouvier-Capely, C., Adam, M., Phan, G., Rebière, F. et Fattal, E. (2010). "Quick and efficient extraction of uranium from a contaminated solution by a calixarene nanoemulsion". International Journal of Pharmaceutics, 398(1-2), 179-184
- Spagnul, A., Bouvier-Capely, C., Phan, G., Landon, G., Tessier, C., Suhard, D., Rebière, F., Agarande, M. et Fattal, E. (2011).
 "Ex vivo decrease in uranium diffusion through intact and excoriated pig ear skin by a calixarene nanoemulsion". European Journal of Pharmaceutics and Biopharmaceutics, 79(2), 258-267
- Phan, G., Semili, N., Bouvier-Capely, C., Landon, G., Mekhloufi, G., Huang, N., Rebière, F., Agarande, M. et Fattal, E. (2013). "Calixarene cleansing formulation for uranium skin contamination". Health Physics, 105(4), 382-389
- Grives, S., Phan, G., Morat, G., Suhard, D., Rebiere, F. et Fattal, E. (2015). "Ex vivo uranium decontamination efficiency on wounded skin and in vitro skin toxicity of a calixarene-loaded nanoemulsion". Journal of Pharmaceutical Sciences, 104(6), 2008-2017

Cevidra[®] cream has been developed with the support of

THE FRENCH INSTITUTE FOR RADIATION PROTECTION AND NUCLEAR SAFETY

Thank you for your attention !

Contact: Alexis Finet – Pharmacist / Radiation Protection Engineer

Laboratoire Cevidra, 45 boulevard Marcel Pagnol 06130 GRASSE – FRANCE

Phone: +33 (0)4.93.70.58.31 Email: afinet@cevidra.com

ANNEXES

REAL CASES IN NUCLEAR FACILITIES

URANIUM / PLUTONIUM / AMERICIUM	Contaminated body area	Initial measure of contamination	Elapsed time before treatment	Final measure and number of applications
Case 1 (U and Pu)	Head	70 c/s (3,2 Bq/cm²)	< 2 h	Fully decontaminated. 0 c/s and 0 Bq/cm ² after 1 application
Case 2 (Pu)	Head	1,6 Bq/cm ²	<2h	Fully decontaminated. 0 Bq/cm ² after 1 application .
Case 3 (U and/or Pu, no information)	Head	14 c/s alpha 10 c/s beta	< 2 h	Fully decontaminated. 0 c/s after 2 applications .
Case 4 (U)	Hand	2 Bq/cm²	< 15 min	Incompleted decontamination. <u>Misuse had been confirmed from the user</u> *
Case 5 (U and Pu)	Head + upper limbs	32 Bq/cm²	<2h	Fully decontaminated. 0 Bq/cm ² after 2 to 5 applications (depending on the location).
Case 6 (U and/or Pu, no information)	Head	2 Bq/cm²	<2h	Fully decontaminated. Already 0 Bq/cm² after 1 application . 2 applications were performed.
Case 7 (Pu and Am)	Hands and fingers	2 c/s	< 2 h	Fully decontaminated. 0 c/s after 3 applications .
Case 8 (U and Pu)	Upper limb	0,2 Bq/cm²	< 2 h	Fully decontaminated. 0 Bq/cm ² after 1 application .
Case 9 (Pu)	Head and upper limb	2 c/s	<1h	Fully decontaminated. 0 c/s after 2 applications .

COBALT	Contaminated body area	Initial measure of contamination	Elapsed time before treatment	Final measure and number of applications
Case 1	Head	15 c/s	<1h	Fully decontaminated. 0 c/s after 1 application .
Case 2 (Co and Zr)	Head	70 c/s	<1h	Fully decontaminated. 0 c/s after 1 application .
Case 3	Head	220 c/s	<2h	Fully decontaminated. 0 c/s after 1 application .
Case 4	Head	40 c/s	<1h	Fully decontaminated. 0 c/s after 1 application .

ZIRCONIUM	Contaminated body area	Initial measure of contamination	Elapsed time before treatment	Final measure and number of applications
Case 1	Head	70 c/s	<1h	Fully decontaminated. 0 c/s after 1 application .
Case 2	Head	10 c/s	<1h	Fully decontaminated. 0 c/s after 1 application .
Case 3 (Co and Zr)	Head	70 c/s	<1h	Fully decontaminated. 0 c/s after 1 application .

Analysis of post market data on a 14 months period (from August 2018 to September 2019).

REAL CASES IN NUCLEAR FACILITIES

SILVER	Contaminated body area	Initial measure of contamination	Elapsed time before treatment	Final measure and number of applications
Case 1	Head	5 c/s	< 2 h	Fully decontaminated. 0 c/s after 1 application .
Case 2	Head	10 c/s	< 2 h	Fully decontaminated. 0 c/s after 1 application .

CESIUM	Contaminated body area	Initial measure of contamination	Elapsed time before treatment	Final measure and number of applications
Case 1	Head et upper limb	250 Bq/cm²	< 30 min	Fully decontaminated. 0 Bq/cm ² after 2 applications .

WHAT IS THE CEVIDRA CREAM

The **Cevidra®** cream is an oil in water emulsion composed of:

- carboxylic calixarene (active substance) surfactants
- paraffin oil
- water

- emulsifiers
- preservatives

