

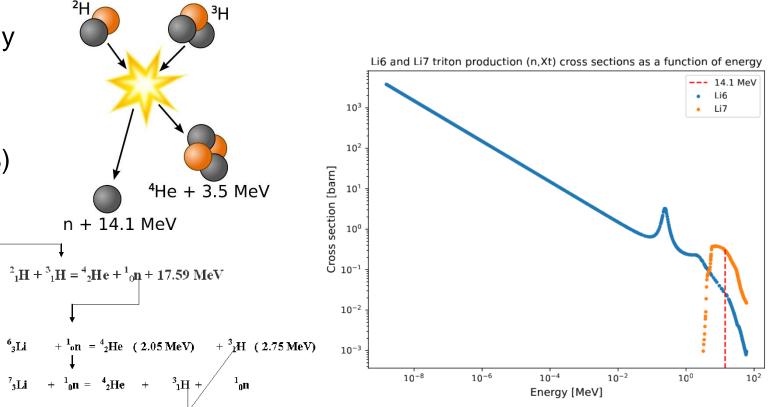
Modeling neutronics for HELIAS stellarator using Serpent2 Tommi Lyytinen, <u>Antti Snicker</u> Aalto University et al.

Introduction to fusion and stellarators

Benchmarking MCNP and Serpent2

Breeding blanket optimization via parametric model

Conclusions/Outlook


Introduction

3

What is thermonuclear fusion?

- ★ Easiest option DT fusion
 - Neutron with 14.1MeV energy
- ★ Need a tritium
 - Lithium breeding reactions
 - Li7 more abundant (92%-8%)
 - Li6 suitable cross-section
 - Enriched lithium needed
- Magnetic field to confine the plasma
 - Tokamaks and stellarators

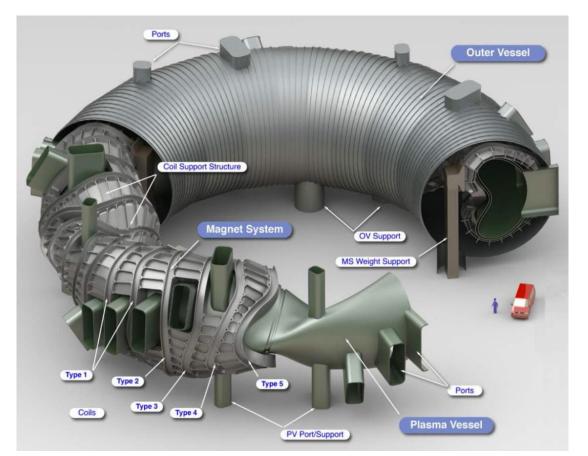
finnfusi‱n

Tokamaks vs. stellarators

★ Tokamak

- Magnetic field from coils and induced current
- Pulsed operation
- Forerunner (i.e. 90% of research volume)
- Close to show-stopping problems
- Design-wise: fusion power plant ~90% the same
- Decision point tokamaks vs. stellarators in future

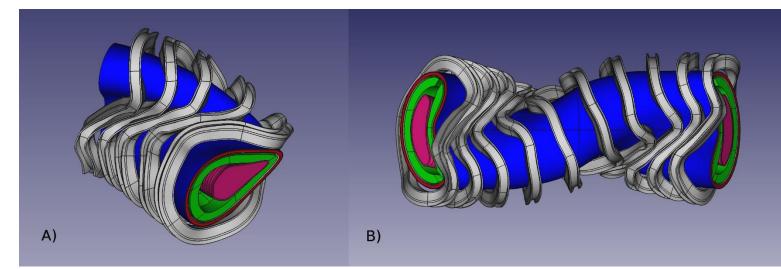
★ Stellarator


- Magnetic field from coils
- Steady-state operation
- Basic performance issues
- Have we seen all problems?
- Complicated geometry
- Currently no show
- ★ Optimized stellarators
 - Wendelstein 7-X as an example
- HELIAS line as a reactor option

finnfusi‰n

HELIAS as a fusion power plant candidate finnfusi

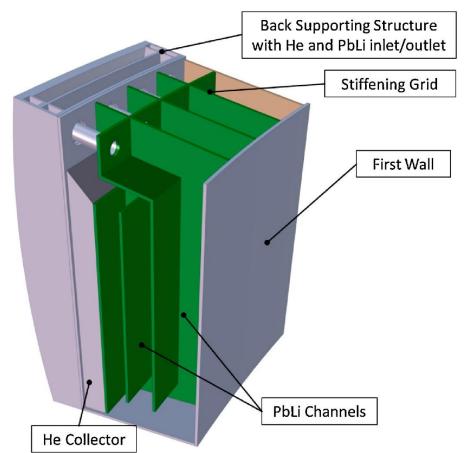
- ★ Basic HELIAS parameters
 - Major radius 22m
 - Minor radius 1.8m
 - Plasma volume 1407m³
 - Fusion power 3GW
- Optimized stellarator following W7-X research line
- Geometry induces major design issues


[1] F. Schauer et al. Fus. Eng. and Des., **88**, 2012, 1619–1622

finnfusi‰n

Neutronics (for stellarators)

- Due to complexity, a parametric (CAD) model suggested
 - Faster design iterations
 - Ease neutron analysis
- ★ MCNP vs. Serpent2
 - Codes have been widely benchmarked
 - MCNP6 can work "directly" with CAD just as Serpent2
- Right: example of HELIAS
 CAD model

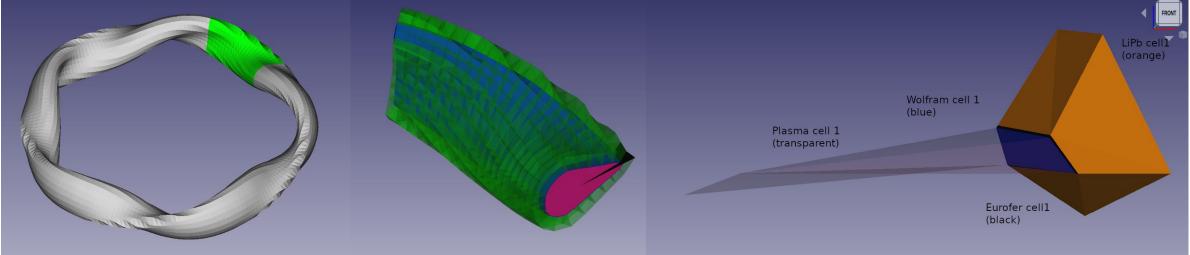


finnfusi‰n

Overview of breeding blanket

- ★ Breeding blanket functions
 - Breed tritium
 - Slow down neutrons
 - Heat water
 - Shield from neutrons
- ★ Various design candidates
 - W(ater)C(ooled)L(ithium)L(ead)
 - H(elium)CLL
 - D(ual)CLL
 - HCP(ebble)B(ed)
- ★ Stellarators
 - Coils close to plasma
 - High breeding and shielding

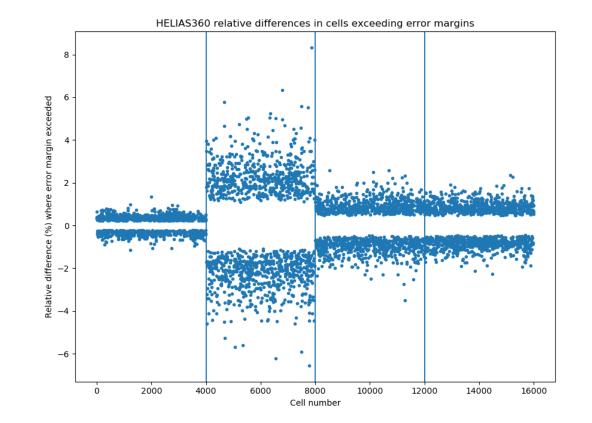
[2] U. Fischer et al. Fus. Eng. and Des. Vol. 109–111,2016, 1458-1463



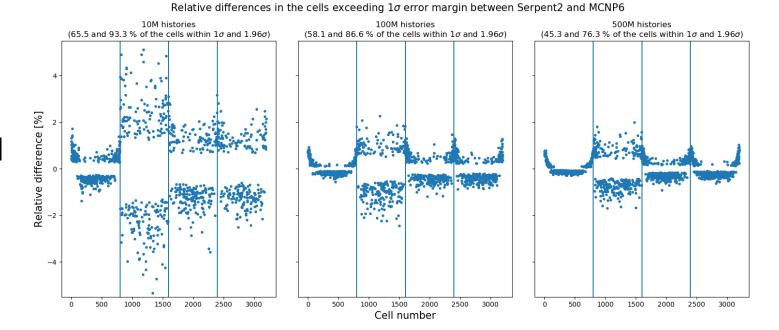
Benchmarking MCNP vs. Serpent

- ★ CAD geometry with cells
- ★ Four layers, each 4000
 - Plasma
 - Wolfram first wall
 - Eurofer first wall
 - Breeding Blanket (BB) and Back Supporting Structure (BSS)

- ★ Compare
 - Relative/average difference in flux (per cell)
 - 72 degree vs. 360 degree model


- Average absolute relative difference 0.598% (for all 16000 cells)
- Standardized difference normally distributed
- ★ Relative difference per cell
 - 360 degree model, acceptable

Aalto University School of Science


 72 degree model, issue with boundary conditions?

- Average absolute relative difference 0.598% (for all 16000 cells)
- Standardized difference normally distributed
- ★ Relative difference per cell
 - 360 degree model, acceptable
 - 72 degree model, issue with boundary conditions?

- Average absolute relative difference 0.598% (for all 16000 cells)
- Standardized difference normally distributed
- ★ Relative difference per cell
 - 360 degree model, acceptable
 - 72 degree model, issue with boundary conditions?

Breeding blanket optimization

Optimization of the breeding blanket

- To be reactor relevant, tritium breeding ratio (TBR=TPR/(neutron source rate)=# of T per fusion n) needs to exceed 1.15
- Design question: how thick blanket is needed?
- Boundary conditions
 - Complicated coils (no space)
 - Detailed design doesn't exist
 - Detailed choice for blanket type doesn't exist
- Initial study with crude assumptions

Maximum available space

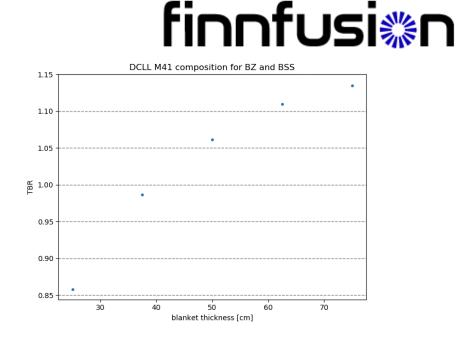
- FW + Armor: 27 mm
- Breeding zone: 500mm
- Space for shielding:
 - Blanket back ~425 mm
 - VV walls: 2 x 60 mm
 - VV shield: ~200 mm
 - Total space for shielding: ~745 mm
- Total thickness: ~ 1272 mm
- ⇒ Presumably sufficient for satisfying breeding and shielding requirements

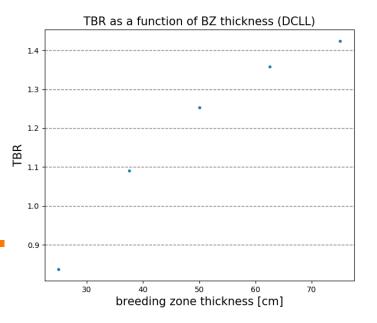
Minimum available space

- FW + Armor: 27 mm
- Breeding zone: 500mm
- Space for shielding:
 - Blanket back ~ 120 mm
 - VV walls: 2 x 60 mm
 - VV shield: ~200 mm
 - Total space for shielding:
 ~ 440 mm
- Total thickness: ~ 967 mm
- ⇒ In such areas breeding zone must be reduced/ minimized and/or efficient shielding materials must be utilized

[3] F. Warmer, Fus. Eng. and Des., 123, 2017, 47-53

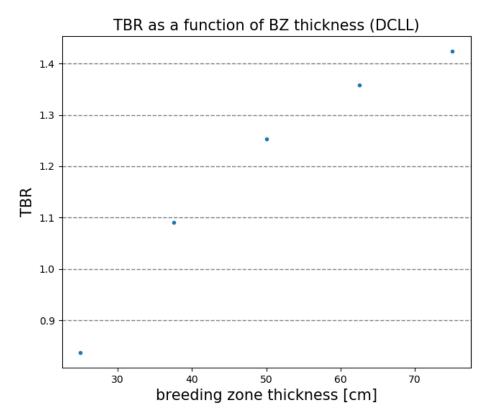
Model generation via parametric model


★ Assumptions


- Arbitrary # layers
- All shaped like plasma
- User defined material/thickness per layer
- Idea: scan blanket thickness, calculate TBR
- ★ Two iterations
 - Assume homogenized (breeding zone+ back support structure)
 - Assume homogenized breeding zone and homogenized back support structure

Breeding blanket thickness vs. TBR

- Major difference between the iterations!
- As expected, only with proper breeding zone scan TBR>1.15
- Threshold located at around 45cm -> within the limits
- In future, need to relax several approximations!


Conclusions/outlook

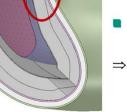
Conclusions

finnfusi‰n

- Stellarators studied as fusion power plant option
- Breeding blanket is a key component of any fusion power plant
- ★ Neutronics essential piece of design
- Serpent2 was benchmarked against MCNP with success
- Serpent2 was used to estimate the necessary breeding blanket thickness

Outlook

- Before design baseline, various options could be looked at
 - Modifying blanket thickness outboard (more space) vs. inboard (less space)
 - Need to consider other breeding blanket options (here only DCLL)
 - Need to consider heterogenous materials
 - Need to consider proper shape for each layer
- ★ After the design baseline
 - Could consider combined neutronics+thermohydraulics, see [4] M. Szogradi et al. Fus. Eng. and Des. <u>184</u>, 2022, 113308
- ★ Tokamaks with Serpent2...


Maximum available space

- FW + Armor: 27 mm
- Breeding zone: 500mm
- Space for shielding:
 - Blanket back ~425 mm
 - VV walls: 2 x 60 mm
 - VV shield: ~200 mm
 - Total space for shielding: ~745 mm
- Total thickness: ~ 1272 mm
- ⇒ Presumably sufficient for satisfying breeding and shielding requirements

finnfusi‰n

Minimum available space

- FW + Armor: 27 mm
- Breeding zone: 500mm
- Space for shielding:
 - Blanket back ~ 120 mm
 - VV walls: 2 x 60 mm
 - VV shield: ~200 mm
 - Total space for shielding:
 ~ 440 mm
- Total thickness: ~ 967 mm

⇒ In such areas breeding zone must be reduced/ minimized and/or efficient shielding materials must be utilized

[3] F. Warmer, Fus. Eng. and Des., **123**, 2017, 47-53

Aalto University School of Science

