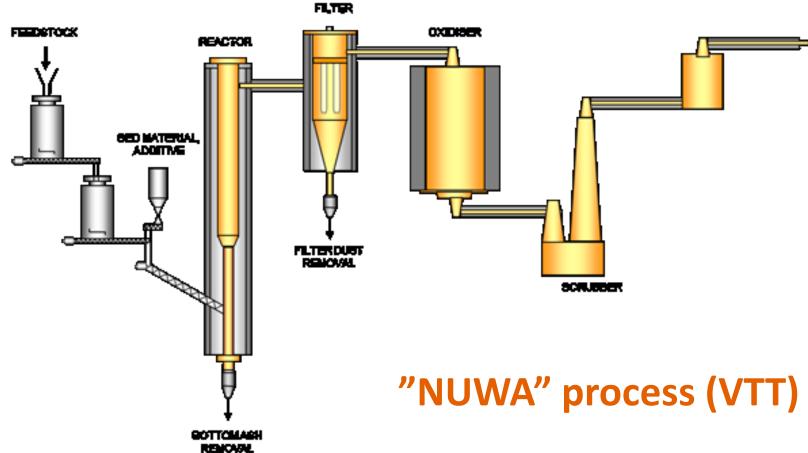


Development of
Gasification based
Thermal Treatment of Low
and Intermediate Level
Waste

Matti Nieminen and Markus Olin VTT Technical Research centre of Finland Ltd


Background

- Removal of organic matter by thermal gasification => suitable for treatment of organic matter containing waste (organic ion exchange resins, operational waste, etc.)
- The first project plans in the end of 80's after Chernobyl disaster
- Technology based on previous R&D&D on IGCC (Integrated Gasification Combined Cycle) technology (started in the beginning of 80's and continued until mid of 90's)
- R&D&D of conventional waste gasification and gas cleaning started mid of 90's (2 commercial scale plants constructed (50 MW/Varkaus and 160 MW/Lahti Energia)
- Development of technology in Tekes funded project 2013-2016
- THERAMIN Euratom project 2017- (2020)
- Until now experimental develpment made using stabile isotopes

 Until now patent granted in Finland and Russia (under examination in USA, China, EPO, etc.)

Process description

- Removal of organic matter by Thermal gasification
 - Well controlled reaction temperature lower than in incineration
 - ⇒Minimised vapour pressure of cesium and other radionuclides
 - ⇒Enables efficient gas cleaning prior release to atmosphere
- Reducing conditions in the reactor favourable for relatively simple gas cleaning with high efficiency
- Cleaned gas is oxidised in a high temperature oxidiser
- Flue gases cleaned in two steps: wet scrubbing followed by HEPA filter

4

Status of development today

- Performance of the developed process verified using simulated feeds (non-radioactive waste; ion exchange resins doped by stable isotopes)
- Partners for commercialization are seeked
- Next step demonstration using hot samples
 - Licensing for operation with hot feeds required

3

The European project THERAMIN -

Thermal treatment for radioactive waste minimization and hazard reduction

Matti Nieminen, VTT Technical Research Centre of Finland Ltd

What?

Low- and intermediate-level waste (LILW) is one of the least radioactive waste, but the tonnages involved are by far the greatest (together with the very low level waste).

LILW (Low and Intermediate Waste)

- The LILW of interest for the THERAMIN project were selected by partners
 of the project (not representing all LILW but selected waste fractions could potentially be processed by
 thermal treatment)
- In many cases rich in organic matter contaminated by some radioactive components
- Volume is large but radioactivity relatively low
- May contain poisonous or hazardous components
- Disposal of LILW causes significant cost

Thermal processing could offer an attractive alternative

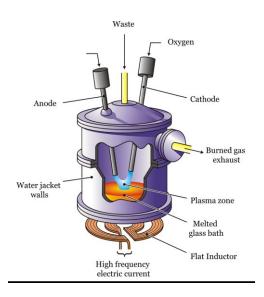
- Thermal processing/treatment could be an alternative way to process LILW before disposal
- Thermal processing will
 - Enhance safety
 - Reduce volume
 - Reduce toxicity
 - In many cases enable best possible immobilisation of radioactive components
- Thermal processing is not free of charge and risk but it might save money and improve safety in longer term

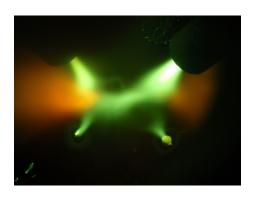
The THERAMIN project

- The main objectives of the THERAMIN project are to
 - Promote thermal treatment of LILW by piloting/demonstrating several thermal treatment technologies
 - Improve the overall understanding and knowhow on thermal treatment
 - Make thermal treatment technologies more well-known technologies

Who will do this?

- Twelve key players in Europa
- In addition, 9 end-users





The most essential part of the project

- Demonstration of several different technologies to treat thermally low and intermediate radioactive waste
- Technologies demonstrated included direct Joule heating, plasma melting, thermal gasification, etc.
- Products of these processes have been characterised
- The impact in terms of disposability of thermally treated waste products evaluated

SHIVA by CEA

Geomelt by NNL

HIP by NNL

Thermal gasification by VTT

Further information

The THERAMIN project has a web site

http://www.theramin-h2020.eu/index.htm

or contact coordinator

matti.nieminen@vtt.fi