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Introduction — basics of tokamak

= Most widely studied fusion reactor concept

= Plasma-state fuel (D, T) confined in a toroidal chamber with strong
magnetic fields

= Temperature in the core plasma ~100 000 000 K
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= Field lines guide plasma to separate divertor
plates, where it comes into direct contact with
the plates

= lon flux and temperature are highest at the
strike point.

= Particles reaching the divertor are less likely to inner Strik
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Why understanding wall erosion
in tokamaks matters

= Assessing the lifetime of plasma-facing components (PFCs)
= Plasma-induced erosion of wall materials significantly reduces PFCs
lifespan in fusion environments
= Estimating the amount of wall material such as tungsten (W)
impurities ending up in the core plasma
= W, as a high-Z impurity, effectively cools the plasma through enhanced
radiative losses

= Migration and formation of tritium (T) -containing co-deposited

layers on the PFCs
= D-T is favorable reaction, but due to high radioactivity and rarity of T,
retention on PFCs must be minimized




Sputtering

= Incoming particle initiates collision cascade in solid leading to ejection of atoms

= Common erosion mechanism in tokamak environment

= Common PWI processes

= a) reflection, b) sputtering, ¢) deposition/re-deposition, d) co-deposition
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= At the divertor region PFCs particle load lead to:

= Gross erosion (sputtering) of W

= (Prompt) re-deposition — net erosion of W differs from gross erosion
= Potential PFC damage (melting, cracking, etc.)




How to experimentally study wall
erosion in tokamak environment [1]

= Exposing well-defined samples to controlled plasma discharges

= Considerations for sample design:
= Proxy material that is separable from surrounding materials
= Similar mass and ionization energy as wall material
= Sample geometry determines whether the study targets net or gross erosion

= Defining changes in material thickness through post-mortem

measurement
= Change in material thickness defines net erosion/deposition
= Measurements should be material specific (RBS)

= Simulations help to understand physics behind the experimental
observations

[1] R. Bastasz, et al., J. Nucl. Mater. 310-314 (1995) 220-222



ASDEX Upgrade (AUG)

= Medium-size tokamak located at Max-Planck-Institut fur
Plasmaphysik (Garching, Germany)

= QOperational since 2007
= First wall equipped with W-coated graphite or bulk-W tiles

(2]

[2] IPP Online picture archive - https://www.ipp.mpg.de/1471827/asdex_upgrade




The experiment matars otk
= Mo-coated graphite samples with Au marker surfaces of two sizes (5 x
5 mm? and 1 x 1 mm?2) were placed at outer strike point (OSP) area of

AUG divertor

= 5 x 5 mm?2: re-deposition expected on marker surface — net erosion

= 1 x 1 mm?2: re-deposition expected outside marker surface — gross erosion 12 mm ie1 s
X X

= Samples were subjected to 8 identical plasma discharges mm?  mm?
= Total exposure time: ~32 s
= Strike point conditions: n, ggp~0.5%101" m3, T o5p~20 €

= Main findings: =N A W%
= Erosion peak near OSP [ |
= Maximum net erosion

rate 1.0-1.1 nm/s

(3]
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[3] A. Hakola et al., Nucl. Fus. 61 (2021) 116006
[4] A. Hakola et al., Nucl. Mater. Energy 25 (2020) 100863



Simulation tools

« ERO2.0 - 3D Monte Carlo trace impurity code for modelling
plasma-wall interactions (PWI) [5]

* Upgrade to earlier ERO code

- SDTrimSP — Binary Collision Approximation (BCA) code to
simulate atomic collisions in solid targets [6]

* Sputtering and reflection yield data used in ERO2.0

* OSM - "Onion Skin Model” to produce background plasma
solutions in the scrape-off layer (SOL) plasma [7]

[5] J. Romazanov et al., Phys. Scr. T170 (2017) 014018
[6] A.Mutzke et al., SDTrimSP Version 6.00, IPP Report 2019-02
[7] P. Stangeby, et al., Nucl. Fusion 35 (1995) 1391.




Simulation geometry
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= Simulation volume 300 x 300 x 50 mm?

= Poloidal-toroidal surface along outer target plate constructed from rectangles with
decreased sizes in areas of interest
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Background plasma and parameters of m
simulation
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= Applied background plasma created with OSM follows the Langmuir-probe (LP)
measurements of electron density and temperature at the outer divertor target [3]
= Spatially homogenous constant impurity concentrations of cg = ¢ = ¢y = 0.5% and
cw = 0.005%, with average charge states Zg = 3,2, =4,2Zy, =5, Z, =13 [4]

[3] A. Hakola et al., Nucl. Fus. 61 (2021) 116006
[4] A. Hakola et al., Nucl. Mater. Energy 25 (2020) 100863



Sputtering data

Angle dependent erosion and reflection data for Au computed using SDTrimSP
Angle dependent results are compared to previously used sputtering yields provided by

the Bohdansky formula with no angle dependency [4]
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Au gross erosion/deposition (nm/s)
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[4] A. Hakola et al., Nucl. Mater. Energy 25 (2020) 100863

Significantly improved
match to measured net
erosion of Au with new
SDTrimSP data with respect
to estimates given by the
Bohdansky formula
Deviations around OSP
and PFR arise from (i)
uncertainties in location of
OSP and absence of LP
data in its immeadiate
surroundings, (ii) shape of
n, and T, profiles in the
PFR and (iii) experimental
uncertainties



Au gross erosion (nm/s)
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The effect of different impurities
on gross erosion
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= Simulation sensitive to
impurity concentration >
calls for further studies

Eroded Au, Mo, or W have
minor role in sputtering

= Eroded material promptly
re-deposited as low-
energy particles



Au as proxy for W

= Net erosion of toroidally extended Au surfaces (fig. a) 3—6 times higher in comparison to W

= Gross erosion of toroidally extended Au surfaces (fig. b) 4—6 times higher in comparison to W
- Au erosion substantially higher in comparison to W. Au suboptimal proxy for quantitative assessment
of W erosion
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Au as proxy for W

(a) . Au5 x 5mm? | (b) . Au1x 1mm?2
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= Net erosion of 5 x 5§ mm? markers 2—6 times higher in comparison to toroidally
extended Au surfaces
-2 5 x 5 mm? markers too small in toroidal direction for net erosion studies due to

re-deposition of eroded Au largely toroidally downstream from the marker surfaces



Au net erosion/deposition (nm/s)
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toroidally extended Au
surfaces
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erosion studies

— Net and gross erosion of W overestimated by factors of 15—20 and 3—4 by Au

markers due to material and geometry effects



Conclusions

—Erosion of Au markers near the outer strike point of AU

simulated using ERO2.0 and SDTrimSP

v" Improved agreement between simulated and measured net erosion of Au
particularly due to adoption of new sputtering and reflection data created
with SDTrimSP

v Net erosion was found to be caused mostly by light impurities of the
background plasma

v" Au was found to be a poor proxy for quantitative assessment of W
erosion; 5 X 5 mm? markers too small in toroidal direction for studying net
erosion.

> New experiments are needed with better proxy materials, such as

Pt, and improved marker geometries for net erosion studies

17/10/2025 VTT - beyond the obvious
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Toroidal coordinate (mm)

Deposition of particles
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Au gross erosion (nm/s)
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Impact of impurities
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