Neutronics for DEMO Fusion Power Plant: Serpent2 Modelling of 14.1 MeV Neutrons in Reactor Mock-Up Components

L. Sanchis, T. Kurki-Suonio, A. Snicker, D. Flammini, M. Angelone

Outline

- Introduction
- WCLL Tritium Breeding Experiment
 - Neutron studies with serpent
 - Benchmark with MCNP and validation
- Tungsten Shielding Experiment
 - Neutron studies with serpent
 - Benchmark with MCNP
- Summary

Neutrons: A key component to fuel self-sufficiency of DEMO

 Neutrons to produce fuel (T) from Li in the wall blankets

Fuel self-sufficiency

Aalto University School of Science

- ITER will not be ready in time to provide crucial information about fusion neutrons in reactor conditions
 - Experiments and modelling necessary to assess Tritium Breeding Ratio (TBR) and W shielding capabilities

Breeding blanket $^{2}D + ^{3}T - > ^{4}He + n$ ⁶Li + n -> ⁴He + ³T ⁷Li + n -> ⁴He + ³T + n

Laboratory experiments: WCLL breeding blanket and W shielding mock-ups

- Two experiments to test: the breeding efficiency of the Water-Cooled Lithium Lead (WCLL) BB and the shielding capabilities of Tungsten
- Neutron irradiations experiments carried out in mock-ups with simplified geometry
- Both experiments are provided at ENEA, Frascati, using the the Frascati Neutron Generator (FNG)

Aalto University School of Science

Tungsten block in front of the FNG. [P. Batistoni et al., Neutronics benchmark experiment on tungsten, Journal of Nuclear Materials, Vol. 329-333, Part A, (2004) pp. 683-686]

Water-cooled Litium Lead (WCLL) Tritium Breeding Experiment

Water Cooled Lithium Lead (WCLL) breeding blanket mock-up

- WCLL mock-up at the Frascati Neutron Generator represents the European DEMO design
- Serpent model (from MCNP model) includes the realistic geometry and material composition of the mock-up
- Seven detectors lined up at different distances (P1-P7)

Aalto University School of Science

Serpent-calculated neutron flux vs. MCNP

- Neutron flux in the WCLL mock-up calculated at the 7 detector locations and compared to the MCNP results
- Libraries JEFF3.3 and IRDF-II were used
- Difference between Serpent and MCNP results remains below 10% for most of the energy range

Aalto University School of Science

Serpent and MCNP agree well with experiment

 The differential neutron flux as a function of the energy was calculated at position P2 and compared with MCNP and experimental data

P Aalto University School of Science

Agreement with experiments best at high cross section

- Four reaction rates were compared at each detector location with experimental data
- Reaction rates obtained from 5.10⁹ neutron histories
- The highest C/E ratio, 0.88-0.99, for ln(n,n') due to high crosssection

Aalto University School of Science

Tungsten Shielding Experiment

Studying the neutron transport in a reactor-like tungsten shield

- W mock-up mimics the composition of a shielding element in a reactor containing tungsten, SS and water
- Water is replaced by Perspex
- Serpent model (from MCNP model) includes the realistic geometry and material composition of the mock-up

Tungsten block in front of the FNG. [P. Batistoni et al., Neutronics benchmark experiment on tungsten, Journal of Nuclear Materials, Vol. 329-333, Part A, (2004) pp. 683-686]

Serpent model. Top view

Geometry and material composition of the mock-up

- MCNP5 was used to optimise the experimental set-up
- Final set-up includes slabs of W, SS-316 and Perspex
- Nine detectors lined up at different distances from the source

Serpent-calculated neutron flux vs. MCNP

- Neutron flux in the W-shielding mock-up calculated at the 9 detector locations
- Neutron histories: 2.109

Aalto University School of Science

- Libraries: JEFF3.3 and IRDF-II
- Absorption peak at 20 keV due to (n,γ) reaction
- Difference between Serpent and MCNP results remains below 10%

Serpent-calculated reaction rates at the 9 detector locations

- γ reactions: Au(n, γ), W(n, γ)
- n multiplier reactions: Au(n,2n), Ni(n,2n)
- α reactions: Al(n, α), Ni(n,p)
- Serpent analysis ready to be compared against MCNP and experimental data

Aalto University School of Science

Serpent-calculated neutron flux in all slabs

• The effect of neutron multiplication due to Ni inside SS is visible in the flux analysis

Summary and conclusions

- WCLL mock-up was used to benchmark and validate Serpent through the calculation of neutron fluxes and RRs
- A maximum of 10% discrepancy with MCNP was found in the neutron fluxes and C/E is within 0.88-0.99 in the RRs for the case with better statistics

- For W-shield mock-up, geometry was implemented and neutron fluxes and RRs were calculated with Serpent.
- The neutron flux was compared with that from MCNP, showing differences within 10%
- Results will be validated by the end of the year when the experimental data become available

Aalto University School of Science

Summary and conclusions

- Two possible sources of error:
 - JEFF3.3 and IRDFFv2 were used in Serpent while MCNP used JEFF3.3 and IRDFF (v1.05 and v2), which could have affected the detector dosimetric data → Plan to install IRDFF v1.05
 - Low statistics achieved in some of the activation foils (e.g. gold foils are only 25µm thick) → Use variance reduction method or move to a bigger HPC cluster

Back-up slides

RR cross sections (WCLL)

Aalto University School of Science

Calculated/Experiment

	RR Nb(n,2n)	RR Nb(n,2n)	C/E	RR ln(n,n')	RR ln(n,n')	C/E
Pos	Serpent (1/cm ³ s)	Measured (1/cm ³ s)		Serpent (1/cm ³ s)	Measured (1/cm ³ s)	
1	2.01·10 ⁻⁴ (0.06%)	2.21·10 ⁻⁴ (5.0%)	0.91	1.53·10 ⁻⁴ (0.10%)	1.66·10 ⁻⁴ (4.8%)	0.92
2	4.00·10 ⁻⁵ (0.13%)	5.04·10 ⁻⁵ (5.1%)	0.80	6.48·10 ⁻⁵ (0.16%)	7.33·10 ⁻⁵ (4.7%)	0.88
3	1.60·10 ⁻⁵ (0.23%)	2.11·10 ⁻⁵ (5.1%)	0.75	3.65·10 ⁻⁵ (0.20%)	4.14·10 ⁻⁵ (4.2%)	0.88
4	2.69·10 ⁻⁶ (0.56%)	3.41·10 ⁻⁶ (5.2%)	0.78	1.02·10 ⁻⁵ (0.39%)	1.11·10 ⁻⁵ (5.0%)	0.92
5	1.07·10 ⁻⁶ (0.95%)	1.43·10 ⁻⁶ (5.1%)	0.72	4.87·10 ⁻⁶ (0.51 %)	5.28·10 ⁻⁶ (5.8%)	0.92
6	3.71·10 ⁻⁷ (1.50%)	4.53·10 ⁻⁷ (5.1%)	0.80	2.12·10 ⁻⁶ (0.70%)	2.25·10 ⁻⁶ (6.7%)	0.94
7	1.60·10 ⁻⁷ (2.20%)	2.10·10 ⁻⁷ (6.7%)	0.80	1.04·10 ⁻⁶ (0.96%)	1.05·10 ⁻⁶ (7.6%)	0.99

	RR Al(n,α)	RR Al(n,α)	C/E	RR Ni(n,p)	RR Ni(n,p)	C/E
Pos	Serpent (1/cm ³ s)	Measured (1/cm ³ s)		Serpent (1/cm ³ s)	Measured (1/cm ³ s)	
1	5.08·10 ⁻⁵ (0.06%)	6.02·10 ⁻⁵ (4.8%)	0.84	1.95·10 ⁻⁴ (0.07%)	2.09·10 ⁻⁴ (5.0%)	0.93
2	1.04·10 ⁻⁵ (0.13%)	1.41·10 ⁻⁵ (4.8%)	0.74	5.19·10 ⁻⁵ (0.15%)	6.23·10 ⁻⁵ (5.1%)	0.83
3	4.21·10 ⁻⁶ (0.22%)	6.10·10 ⁻⁶ (4.7%)	0.69	2.44·10 ⁻⁵ (0.22%)	3.05·10 ⁻⁵ (5.1%)	0.80
4	7.22·10 ⁻⁷ (0.54%)	1.02·10 ⁻⁶ (5.0%)	0.71	4.98·10 ⁻⁶ (0.51%)	6.10·10 ⁻⁶ (5.2%)	0.82
5	2.91·10 ⁻⁷ (0.88%)	4.49·10 ⁻⁷ (4.9%)	0.65	2.12·10 ⁻⁶ (0.76%)	2.71·10 ⁻⁶ (5.1%)	0.78
6	1.04·10 ⁻⁷ (1.45%)	1.57·10 ⁻⁷ (5.6%)	0.66	8.01·10 ⁻⁷ (1.13%)	1.04·10 ⁻⁶ (5.1%)	0.77
7	4.33·10 ⁻⁸ (2.23%)	6.20·10 ⁻⁸ (5.1%)	0.70	3.53·10 ⁻⁷ (1.70%)	4.35·10 ⁻⁷ (6.7%)	0.81

Aalte School