VTT

Implementing and
A validating MOX fuel
property models in
FINIX

Valtteri Turkki
* - beyond the obvious

AAA A! Y9 Y

A



Introduction

1/11/2022 VTT - beyond the obvious



Motivation

= Utilizing the data from Halden MOX experiments
- The Halden data lake was recently opened

= Developing the MOX capabilities of the KRAKEN framework [1]
* FINIX is especially designed for coupled calculations

= Improve VT T's competence in MOX fuels and high Pu content
fuels

= Get more validation for FINIX
* Validation against the state-of-the-art FRAPCON-4.0 code [2]




Basics of MOX fuels

= Mixed oxide (MOX) fuels
« Composed of uranium (~ 95 wt% with enrichment ~1 wt%) and
plutonium oxides (~ 5 wt%)
* Introduced already in the 60s

= Benefits of MOX fuels

* The fuel pellets can be manufactured from recycled fuel
+ U-238 transmutes to fissile Pu-239
« Can be manufactured from weapons-grade plutonium
» The fuel can reach higher burnups, which makes the fuel cycle more

efficient



Methods
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MOX fuel detalls

= The mixture nature causes MOX fuels to have specific
properties [2]
* Any mixing process will leave Pu-rich spots of size > 10 um
* Fuel homogeneity affects the fuel power distribution
* The Pu-rich spots evolve through diffusion during irradiation
* Many models do not capture these microstructural changes

= This leads to differences in thermal, mechanical and
fission gas release performance compared to UO,
 Especially high burnup behaviour has been studied (also in
this work)



The models

= The changes were made for
three thermal and one
mechanical model
* Thermal: Fuel thermal conductance
Ay, fuel heat capacity ¢, and fuel
melting point T,
« Mechanical: Fuel thermal strain g,
= The most significant effect is
given by the thermal
conductance Ay,
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Implementation

= The models were implemented to FINIX source code along with
new input options
* Fuel type, Pu-wt%

= The validation input-files were obtained by converting FRAPCON

inputs to FINIX inputs with a custom made Python tool
* FRAPCON inputs from the integral assessment report [5]

= For further research purposes a version of FINIX that allows
inputting model parameters was also implemented




MOX model
results
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Validating FINIX against Halden data

= The MOX models were validated | |
using 8 Halden cases o '
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- Starting burnups ranging between ¢ 1000t
23 and 57 MWd/kg 5 e
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Validation against FRAPCON-4.0

= Comparing FINIX and FRAPCON results showed that FRAPCON

performed slightly better

* FINIX total error was 7.5% and FRAPCON was 5.9%
+ Both struggled in the high burnup IFA629-3R6 case
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Inspecting the errors

= The error was measured as

relative error pointwise
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* Interpolation was used to get the
same timestep for both simulation
and reference data

Right: The relative error of the simulations plotted
as a function of fuel burnup. The figure shows well
that the error increases as burnup increases.

Average relative error

04r !
O IFA810-2 O X
= e
~  IFA610-4 ¢ . -
0.35 ¢ IFA629-1R1
IFA629-1R2
03l % IFA629-3R5
' [ IFAB29-3R6
¢  IFAB48-R1
0.25 | A IFAB48-R2
02}
0.15 }
01} -
0.05 f= e
¥

30 40 50 60 70 80
Fuel burnup Bu [MWd/kg]



Further research
- sensitivity analysis

1/11/2022 VTT - beyond the obvious



Sensitivity analysis for the thermal

boundary condition

= The idea was to see where
the solution breaks and
what values give the best
fit
 Breaking was caused by
infinite temperature values
resulting NaN output
= The implementation was
done with a MATLAB script

Start the loop:
- Set the file paths

- Set the stopping condition

e.g., value of p

Modify input files:
- Set boundary_option
- Define heat transfer
coefficient history

Move working directory to Collect and save the results:
the same directory where Run FINIX simulation - Centreline temperature at
FINIX.exe is the topmost axial node

R

Continue and pick
smaller value for hge

[€—— No

Are more
than p% of the
values NaNs?

|

Break the loop and save
the results in a text file

Above: Diagram explaining the logic of the boundary option

testing script.



Results from the sensitivity analysis

= The best results were obtained with

= Heat transfer coefficient h_ values
around 1e4 broken the simulation
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Taking the idea further...

= Implementing an optimization script
 Allows to find optimal input parameters
+ Useful for model development and validation

= The script was based around the
optimization tools available in MATLAB
 fminsearch, fmincon, bayesopt

= The script was first tested for finding optimal

heat transfer coefficient h . value
* Later testing performed with MOX fuel thermal
conductance A,;, model




The iteration logic of the optimization script

-
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Results from the optimization of heat
transfer coefficient

= Optimal value for heat transfer

Total mean relative error

coefficient h_. was found

* This decreased the total error to the
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Optimizing the fuel thermal conductance
model for MOX fuels

= Optimizing the burnup
dependency in the model
improved the results quite
similarly as the h_, value
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Issues with the optimization approach

= The approach assumes that the error comes from the
models/inputs and thus cannot adapt to for instance
instrumentation errors
* One solution would be to filter the input and reference data beforehand
= The algorithm needs some kind of heuristics in order to escape

from local minimums and keep the model physical
+ Bayesian inference with informative priors for model parameters could
help

= For higher number of cases a more efficient tool would be needed
* Python implementation for a computer cluster is under work
« It utilizes the Bayesian optimization library [6]




Summary
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= FINIX fuel performance code can now be used to model MOX
fuels
= MOX implementation was validated against experimental data and

the state-of-the-art FRAPCON-4.0 code

* The total relative error was less than 10%
« Differences between FRAPCON and FINIX were small
* Both codes shared the same difficulties

= The boundary options of FINIX were studied extensively

= A new kind of optimization approach was demonstrated and its
potential for model development was shown
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