
Nuclear Science and Technology Symposium - SYP2025

Espoo, Finland, 21-22 October 2025

1

Utilizing Large Language Models to Improve Requirements Tracing in
the Nuclear Energy Domain

Pyry Aho

Fortum Power and Heat Oy, Nuclear Generation

Keilalahdentie 2-4, 02150 Espoo, Finland

pyry.aho@fortum.com

ABSTRACT

This paper summarizes the results of a thesis conducted in collaboration with Fortum’s Nuclear

Generation business unit and Aalto University. The aim of the thesis was to investigate how large language

models can be utilized to improve the requirements tracing process in the nuclear energy domain. To achieve

this, the design science method was applied to create a prototype for automated candidate trace link generation.

The prototype used a similarity-based approach for generating candidate trace links, where LLMs were utilized

to compute the similarity between two requirements (or a requirement and a document section). Based on the

interviews with four experts at Fortum’s Nuclear Generation business unit, two use cases were defined for the

prototype: requirement-to-requirement tracing and requirement-to-documentation tracing. The prototype’s

accuracy in the first use case was on a decent level, finding around 80% of the true links in its top-5 candidate

links in three out of the four test sets. However, the limitations of the prototype were highlighted in the

requirement-to-documentation use case, where the prototype was only able to find around 50% of the true links

in its top-5 candidate links.

1 INTRODUCTION

Nuclear power plants are complex safety-

critical systems and projects related to them are

highly regulated. Therefore, modernization and

renewal projects have a large number of requirements

derived from regulations and guidelines. With the

addition of the technical requirements imposed by the

existing systems and devices in the plant, large

projects can have thousands of requirements, which

need to be traced throughout the project life cycle.

Requirements traceability is defined as “the

ability to describe and follow the life of a

requirement, in both a forwards and backwards

direction” [1, p. 4]. This definition implies that

requirements should be able to be traced both

backwards to their origins and forwards to all

documentation created based on the requirements [1].

The requirements tracing process can be divided into

four steps: document parsing, candidate link

generation, candidate link evaluation and traceability

analysis [2]. According to Sultanov et al. [2],

candidate link generation refers to the process of

finding “candidate” links between the requirements

and other design artifacts. Depending on the

approach, candidate link generation can be a

repetitive, mundane and time-consuming activity,

especially if the amount of requirements is large [3].

The candidate link generation process has

previously been automated via the use of information

retrieval methods [3]. However, commonly used

information retrieval (IR) methods, such as the vector

space model (VSM) and latent semantic indexing

(LSI), often struggle with synonyms or abbreviations

[4]. Furthermore, IR methods often use the bag-of-

words representation which ignores the order and

context of the terms in the sequence [5].

Statistical language models enable the

utilization of the ordering and context between terms.

These models use n-gram approximations and the

context of the previous 𝑛 terms in the sequence to

calculate the probability that a query is relevant to the

document [6]. However, as DeLucia et al. [6] point

out, the computational cost of estimating these

probabilities grows exponentially as the context size,

n, is increased.

Using large language models (LLMs) to

determine the similarity between two pieces of text

offers a promising solution for overcoming the

challenges with IR methods and statistical language

models. In contrast to statistical language models,

LLMs are able to utilize much larger context

windows while being easily parallelizable (i.e., the

computations can be processed concurrently rather

than sequentially) [7]. Additionally, LLMs are

trained using massive amounts of text, which allows

the model to generalize to unseen data and to learn

similarities between different terms [7].

This paper presents the development and

evaluation of a prototype for automated requirements

tracing for generating requirement-to-requirement

and requirement-to-documentation candidate trace

links. Different methods for automated requirements

tracing were compared, focusing on VSM and

similarity-based LLM methods.

2

2 RESEARCH METHODS

The main contributions of the thesis were a

literature review and an empirical study. Design

science method was applied in the empirical study to

design and implement a first prototype for automated

candidate trace link generation.

2.1 Research problem

The aim of the thesis was to present and

implement a semi-automated method to assist in the

current requirements tracing process. Large language

models were identified as a promising technical

solution for automating parts of the process.

Therefore, the research problem was formulated as:

How can large language models be utilized to

improve the requirements tracing process in the

nuclear energy domain?

2.2 Literature review

A systematic literature review was conducted

to collect and analyse scientific literature relevant to

the research problem of the thesis. The scope of the

literature review was limited to requirements tracing,

requirements management in the nuclear energy

domain, and the utilization of large language models

in text similarity analysis.

The search and selection of relevant literature

was done systematically. The search and selection

process consisted of three main steps: trial-and-error

search to find suitable search queries, database search

based on the queries, and applying the snowballing

method to the papers found from the database search.

2.3 Design science

The empirical study applied the design science

research method, which “creates and evaluates IT

artifacts intended to solve identified organizational

problems" [8, p. 49]. In the context of the thesis, the

organizational problem was the time-consuming

manual requirements tracing process. The proposed

IT artifact to solve this problem was the prototype for

automated candidate link generation.

The design science process consisted of five

main steps introduced by Peffers et al. [8]. The

problem identification step of the empirical study

consisted of conducting semi-structured interviews

and a document analysis. In the definition of the

solution objectives step, the results of the interviews

and document analysis were used to determine the

prototype’s main objectives and detailed

requirements.

The design and development step consisted of

designing the architecture of the prototype based on

functional and architecturally significant non-

functional requirements. In the demonstration and

evaluation step, the prototype was evaluated using

both quantitative and qualitative measures. The

quantitative evaluation included testing the

prototype’s accuracy and performance on multiple

different test sets. The qualitative evaluation included

evaluating the fulfilment of the prototype’s

requirements.

The communication step included presenting

the prototype and the results of its evaluation to the

main stakeholders of the AI-project group at Fortum

and the thesis seminar arranged by the university.

2.4 The prototype

The prototype was trained using the sentence-

transformers library and its API for fine-tuning

LLMs, and existing requirements tracing data from

earlier projects. Two versions of the RoBERTa LLM

fine-tuned for general text similarity tasks were

tested. The smaller all-distilroberta-v1 model had

82.1 million parameters and the larger all-roberta-

large-v1 355 million parameters. These relatively

small models were used, because the prototype had

to be run locally due to the confidentiality of the

training and testing data.

Figure 1 shows the fine-tuning pipeline of the

LLM. The model takes two sections of text (a

requirement or document section) as its input and

predicts, whether a trace link should exist between

the two inputs. These predictions are compared

against the manually created trace links in the

training data. Then, the parameters of the model are

tuned to improve the predictions, i.e. give higher

similarity scores to inputs, which have a trace link

between them.

Figure 1: The fine-tuning (left) and inference (right)

pipelines LLM, modified from [9].

Recall was used as the main accuracy metric

for the evaluation of the prototype. Recall is defined

3

as the ratio between found true links and all true links.

The recall value approaches one as the amount

candidate links is increased (if all possible candidate

links are returned, the recall value is always 1).

Therefore, recall at different intervals of returned

candidate links was used to evaluate the prototype.

3 RESULTS

3.1 Literature Review

The most relevant findings of the literature

review in terms of the development of the prototype

and their effects on the empirical study are gathered

in Table 1. These discoveries were used in the

"defining the solution objectives" phase of the

empirical study, when defining the high-level

objectives and requirements for the prototype.

Additionally, the discoveries were utilized when

designing the architecture of the prototype, choosing

the training methods, and choosing the appropriate

pre-trained LLM for the task.

Table 1: The main discoveries of literature review.

Main discoveries
Effects on the empirical

study

STUK requires that

appropriate requirements

traceability is implemented

through all project phases.

Justifies the importance and

need for implementing

requirements tracing in

projects.

Recall, precision and the F2-

score are the main measures

of accuracy used for

evaluating automated

requirements tracing methods.

Recall was used as the main

accuracy metric for the

evaluation of the prototype.

The requirements tracing

problem can be formulated as

a text matching problem.

The prototype’s similarity-

based LLM

implementations followed

the text matching problem

formulation.

Fine-tuning LLMs on

domain-specific data can

considerably increase the

accuracy of the results.

Requirements tracing data

from earlier projects was

used to fine-tune the pre-

trained LLMs.

Autoencoder models

generally outperform

autoregressive models in

natural language

understanding tasks.

Autoencoder models

(RoBERTa) were used in

the implementation of the

prototype.

3.2 Empirical Study

The empirical study tested a similarity-based

approach for generating requirement-to-requirement

and requirement-to-documentation candidate trace

links. The basic idea behind the approach was to

utilize LLMs to calculate the similarity between two

inputs (requirement or document section) and rank all

the input pairs based on their similarity score. The

process of calculating the similarity scores is

modelled in the inference pipeline in Figure 1.

Three main implementations for computing

the similarity were tested: VSM, basic LLM and fine-

tuned LLM. Of these the fine-tuned LLM

implementation performed the best on average.

However, on the more challenging test sets

(requirement-to-documentation tracing) all

implementations seemed to perform equally poorly.

The prototype’s accuracy was on a good level

when creating trace links between native and process

requirements (see Figure 2), and between technical

stakeholder requirements and technical system-level

requirements. In these cases, when retrieving the top-

5 candidate links, the prototype averaged 80% recall.

However, in one dataset where technical stakeholder

requirements were linked to native requirements, the

prototype struggled to find the correct links.

Figure 2: The recall of the prototype in requirement-

to-requirement tracing.

As shown in Figure 3, the prototype’s accuracy

was significantly worse in the requirement-to-

documentation use case than in the requirement-to-

requirement use case. On average the model only

found around 50% of the true links when the top-5

candidate links were considered.

Figure 3: The recall of the prototype in requirement-

to-documentation tracing.

4

4 CONCLUSIONS

Large language models seem to produce

significantly more accurate candidate trace links

when the source and target requirements are

expressed in a similar level of technical detail. The

prototype was able to generate sufficiently accurate

trace links between process requirements and native

requirements as well as between technical

stakeholder requirements and technical system-level

requirements. However, the prototype struggled to

find accurate trace links between technical

stakeholder requirements and native requirements

(YVL requirements).

A similarity-based LLM approach may not be

suitable for generating trace links between

requirements and documentation. The results showed

that the accuracy of the prototype was insufficient in

requirement-to-documentation tracing. In theory, the

vector representations of the requirements and

document sections created by the LLM should be

able to capture complex relationships between

requirements and documentation. However, in

practice the model struggled with the varying

terminology and level of technical detail between the

requirements and documentation.

As the thesis was limited to only testing

relatively small autoencoder LLMs, future research

could focus on testing the performance of state-of-

the-art LLMs in the requirements tracing task.

However, the recent development of LLMs has

focused on generative AI and autoregressive models

(such as GPT-4). Utilizing these models with the

prototype would require considerable modifications.

A large part of the documentation and

requirements produced at the case company are

written in Finnish. Therefore, it could be beneficial

to extend the tool’s functionality to requirements and

documentation written in Finnish. Furthermore,

BERT models trained on Finnish datasets, such as

FinBERT [10] from TurkuNLP, already exist and are

freely available.

ACKNOWLEDGEMENTS

The thesis was conducted in collaboration with

Fortum’s Nuclear Generation business unit and Aalto

University. The author extends their gratitude to the

thesis supervisor Prof. Fabian Fagerholm and

advisors Dr. Marjo Kauppinen, Tapani Raunio (MSc)

and Leena Kappinen (MSc), and the Nuclear AI

project group for their invaluable feedback and help

throughout the thesis process.

REFERENCES

[1] O. Gotel and C. Finkelstein, “An analysis of the

requirements traceability problem”, Proceedings

of IEEE International Conference on

Requirements Engineering, 1994, pp. 94–101.

[2] H. Sultanov and J. H. Hayes, “Application of

swarm techniques to requirements engineering:

Requirements tracing”, 18th IEEE International

Requirements Engineering Conference, 2010,

pp. 211–220.

[3] J. Hayes, A. Dekhtyar, and J. Osborne,

“Improving requirements tracing via

information retrieval”, Proceedings. 11th IEEE

International Requirements Engineering

Conference, 2003., 2003, pp. 138–147.

[4] J. Cleland-Huang, A. Czauderna, M. Gibiec, and

J. Emenecker, “A machine learning approach

for tracing regulatory codes to product specific

requirements”, Proceedings of the 32nd ACM/

IEEE International Conference on Software

Engineering - Volume 1, 2010, pp. 155–164.

[5] M. Borg, P. Runeson, and A. Ardö, “Recovering

from a decade: A systematic mapping of

information retrieval approaches to software

traceability”, Empirical Software Engineering,

vol. 19, no. 6, pp. 1565–1616, 2014.

[6] A. De Lucia, A. Marcus, R. Oliveto, and D.

Poshyvanyk, “Information retrieval methods for

automated traceability recovery”, Software and

Systems Traceability, J. Cleland-Huang, O.

Gotel, and A. Zisman, Eds. London: Springer

London, 2012, pp. 71–98.

[7] D. Jurafsky and J. H. Martin, “Speech and

Language Processing: An Introduction to

Natural Language Processing, Computational

Linguistics, and Speech Recognition.”

unpublished, 2023.

[8] K. Peffers, T. Tuunanen, M. Rothenberger, and

S. Chatterjee, “A design science research

methodology for information systems research”,

Journal of Management Information Systems,

vol. 24, pp. 45–77, Jan. 2007.

[9] N. Reimers and I. Gurevych, “Sentence-bert:

Sentence embeddings using siamese bert-

networks”, Proceedings of the 2019 Conference

on Empirical Methods in Natural Language

Processing, Association for Computational

Linguistics, Nov. 2019.

[10] A. Virtanen, J. Kanerva, R. Ilo, et al.,

“Multilingual is not enough: Bert for finnish”,

2019.

