Nuclear Science and Technology Symposium - SYP2025
Espoo, Finland, 21-22 October 2025

Utilizing Large Language Models to Improve Requirements Tracing in
the Nuclear Energy Domain

Pyry Aho
Fortum Power and Heat Oy, Nuclear Generation
Keilalahdentie 2-4, 02150 Espoo, Finland
pyry.aho@fortum.com

ABSTRACT

This paper summarizes the results of a thesis conducted in collaboration with Fortum’s Nuclear
Generation business unit and Aalto University. The aim of the thesis was to investigate how large language
models can be utilized to improve the requirements tracing process in the nuclear energy domain. To achieve
this, the design science method was applied to create a prototype for automated candidate trace link generation.
The prototype used a similarity-based approach for generating candidate trace links, where LLMs were utilized
to compute the similarity between two requirements (or a requirement and a document section). Based on the
interviews with four experts at Fortum’s Nuclear Generation business unit, two use cases were defined for the
prototype: requirement-to-requirement tracing and requirement-to-documentation tracing. The prototype’s
accuracy in the first use case was on a decent level, finding around 80% of the true links in its top-5 candidate
links in three out of the four test sets. However, the limitations of the prototype were highlighted in the
requirement-to-documentation use case, where the prototype was only able to find around 50% of the true links

in its top-5 candidate links.
1 INTRODUCTION

Nuclear power plants are complex safety-
critical systems and projects related to them are
highly regulated. Therefore, modernization and
renewal projects have a large number of requirements
derived from regulations and guidelines. With the
addition of the technical requirements imposed by the
existing systems and devices in the plant, large
projects can have thousands of requirements, which
need to be traced throughout the project life cycle.

Requirements traceability is defined as “the
ability to describe and follow the life of a
requirement, in both a forwards and backwards
direction” [1, p. 4]. This definition implies that
requirements should be able to be traced both
backwards to their origins and forwards to all
documentation created based on the requirements [1].
The requirements tracing process can be divided into
four steps: document parsing, candidate link
generation, candidate link evaluation and traceability
analysis [2]. According to Sultanov et al. [2],
candidate link generation refers to the process of
finding “candidate” links between the requirements
and other design artifacts. Depending on the
approach, candidate link generation can be a
repetitive, mundane and time-consuming activity,
especially if the amount of requirements is large [3].

The candidate link generation process has
previously been automated via the use of information
retrieval methods [3]. However, commonly used
information retrieval (IR) methods, such as the vector

space model (VSM) and latent semantic indexing
(LSI), often struggle with synonyms or abbreviations
[4]. Furthermore, IR methods often use the bag-of-
words representation which ignores the order and
context of the terms in the sequence [5].

Statistical language models enable the
utilization of the ordering and context between terms.
These models use n-gram approximations and the
context of the previous n terms in the sequence to
calculate the probability that a query is relevant to the
document [6]. However, as DeLucia et al. [6] point
out, the computational cost of estimating these
probabilities grows exponentially as the context size,
n, is increased.

Using large language models (LLMs) to
determine the similarity between two pieces of text
offers a promising solution for overcoming the
challenges with IR methods and statistical language
models. In contrast to statistical language models,
LLMs are able to utilize much larger context
windows while being easily parallelizable (i.e., the
computations can be processed concurrently rather
than sequentially) [7]. Additionally, LLMs are
trained using massive amounts of text, which allows
the model to generalize to unseen data and to learn
similarities between different terms [7].

This paper presents the development and
evaluation of a prototype for automated requirements
tracing for generating requirement-to-requirement
and requirement-to-documentation candidate trace
links. Different methods for automated requirements
tracing were compared, focusing on VSM and
similarity-based LLM methods.

1

2 RESEARCH METHODS

The main contributions of the thesis were a
literature review and an empirical study. Design
science method was applied in the empirical study to
design and implement a first prototype for automated
candidate trace link generation.

2.1 Research problem

The aim of the thesis was to present and
implement a semi-automated method to assist in the
current requirements tracing process. Large language
models were identified as a promising technical
solution for automating parts of the process.
Therefore, the research problem was formulated as:
How can large language models be utilized to
improve the requirements tracing process in the
nuclear energy domain?

2.2 Literature review

A systematic literature review was conducted
to collect and analyse scientific literature relevant to
the research problem of the thesis. The scope of the
literature review was limited to requirements tracing,
requirements management in the nuclear energy
domain, and the utilization of large language models
in text similarity analysis.

The search and selection of relevant literature
was done systematically. The search and selection
process consisted of three main steps: trial-and-error
search to find suitable search queries, database search
based on the queries, and applying the snowballing
method to the papers found from the database search.

2.3 Design science

The empirical study applied the design science
research method, which “creates and evaluates IT
artifacts intended to solve identified organizational
problems"” [8, p. 49]. In the context of the thesis, the
organizational problem was the time-consuming
manual requirements tracing process. The proposed
IT artifact to solve this problem was the prototype for
automated candidate link generation.

The design science process consisted of five
main steps introduced by Peffers et al. [8]. The
problem identification step of the empirical study
consisted of conducting semi-structured interviews
and a document analysis. In the definition of the
solution objectives step, the results of the interviews
and document analysis were used to determine the
prototype’s main objectives and detailed
requirements.

The design and development step consisted of
designing the architecture of the prototype based on
functional and architecturally significant non-
functional requirements. In the demonstration and
evaluation step, the prototype was evaluated using
both quantitative and qualitative measures. The
quantitative evaluation included testing the
prototype’s accuracy and performance on multiple
different test sets. The qualitative evaluation included
evaluating the fulfilment of the prototype’s
requirements.

The communication step included presenting
the prototype and the results of its evaluation to the
main stakeholders of the Al-project group at Fortum
and the thesis seminar arranged by the university.

2.4 The prototype

The prototype was trained using the sentence-
transformers library and its APl for fine-tuning
LLMs, and existing requirements tracing data from
earlier projects. Two versions of the ROBERTa LLM
fine-tuned for general text similarity tasks were
tested. The smaller all-distilroberta-vl model had
82.1 million parameters and the larger all-roberta-
large-vl 355 million parameters. These relatively
small models were used, because the prototype had
to be run locally due to the confidentiality of the
training and testing data.

Figure 1 shows the fine-tuning pipeline of the
LLM. The model takes two sections of text (a
requirement or document section) as its input and
predicts, whether a trace link should exist between
the two inputs. These predictions are compared
against the manually created trace links in the
training data. Then, the parameters of the model are
tuned to improve the predictions, i.e. give higher
similarity scores to inputs, which have a trace link
between them.

{0, 1}

poieg }

LLM made|

LLM madel LLM model

I I |

f Target artif Source artifact Target artifact

Figure 1: The fine-tuning (left) and inference (right)
pipelines LLM, modified from [9].

Recall was used as the main accuracy metric
for the evaluation of the prototype. Recall is defined

2

as the ratio between found true links and all true links.
The recall value approaches one as the amount
candidate links is increased (if all possible candidate
links are returned, the recall value is always 1).
Therefore, recall at different intervals of returned
candidate links was used to evaluate the prototype.

3 RESULTS
3.1 Literature Review

The most relevant findings of the literature
review in terms of the development of the prototype
and their effects on the empirical study are gathered
in Table 1. These discoveries were used in the
"defining the solution objectives” phase of the
empirical study, when defining the high-level
objectives and requirements for the prototype.
Additionally, the discoveries were utilized when
designing the architecture of the prototype, choosing
the training methods, and choosing the appropriate
pre-trained LLM for the task.

Table 1: The main discoveries of literature review.

Main discoveries

Effects on the empirical
study

STUK requires that
appropriate requirements
traceability is implemented
through all project phases.

Justifies the importance and
need for implementing
requirements tracing in

projects.

Recall, precision and the F2-
score are the main measures
of accuracy used for
evaluating automated

requirements tracing methods.

Recall was used as the main
accuracy metric for the
evaluation of the prototype.

The requirements tracing
problem can be formulated as
a text matching problem.

The prototype’s similarity-
based LLM
implementations followed
the text matching problem
formulation.

Fine-tuning LLMs on
domain-specific data can
considerably increase the
accuracy of the results.

Requirements tracing data

from earlier projects was

used to fine-tune the pre-
trained LLMs.

Autoencoder models
generally outperform
autoregressive models in
natural language
understanding tasks.

Autoencoder models
(RoBERTa) were used in
the implementation of the

prototype.

3.2 Empirical Study

The empirical study tested a similarity-based
approach for generating requirement-to-requirement
and requirement-to-documentation candidate trace
links. The basic idea behind the approach was to
utilize LLMs to calculate the similarity between two
inputs (requirement or document section) and rank all
the input pairs based on their similarity score. The

process of calculating the similarity scores is
modelled in the inference pipeline in Figure 1.
Three main implementations for computing
the similarity were tested: VSM, basic LLM and fine-
tuned LLM. Of these the fine-tuned LLM
implementation performed the best on average.
However, on the more challenging test sets
(requirement-to-documentation tracing) all
implementations seemed to perform equally poorly.
The prototype’s accuracy was on a good level
when creating trace links between native and process
requirements (see Figure 2), and between technical
stakeholder requirements and technical system-level
requirements. In these cases, when retrieving the top-
5 candidate links, the prototype averaged 80% recall.
However, in one dataset where technical stakeholder
requirements were linked to native requirements, the
prototype struggled to find the correct links.

0.8

06

Recall

0.4

0.2

—— Random
VSM

—— Fine-tuned LLM

0.0 — Basic LLM

0 20 40 60
Amount of candidate links

Figure 2: The recall of the prototype in requirement-
to-requirement tracing.

As shown in Figure 3, the prototype’s accuracy
was significantly worse in the requirement-to-
documentation use case than in the requirement-to-
requirement use case. On average the model only
found around 50% of the true links when the top-5
candidate links were considered.

Recall

0.2

0.0

0 20
Amaunt of candidate links

Figure 3: The recall of the prototype in requirement-
to-documentation tracing.

4 CONCLUSIONS

Large language models seem to produce
significantly more accurate candidate trace links
when the source and target requirements are
expressed in a similar level of technical detail. The
prototype was able to generate sufficiently accurate
trace links between process requirements and native
requirements as well as between technical
stakeholder requirements and technical system-level
requirements. However, the prototype struggled to
find accurate trace links between technical
stakeholder requirements and native requirements
(YVL requirements).

A similarity-based LLM approach may not be
suitable for generating trace links between
requirements and documentation. The results showed
that the accuracy of the prototype was insufficient in
requirement-to-documentation tracing. In theory, the
vector representations of the requirements and
document sections created by the LLM should be
able to capture complex relationships between
requirements and documentation. However, in
practice the model struggled with the varying
terminology and level of technical detail between the
requirements and documentation.

As the thesis was limited to only testing
relatively small autoencoder LLMs, future research
could focus on testing the performance of state-of-
the-art LLMs in the requirements tracing task.
However, the recent development of LLMs has
focused on generative Al and autoregressive models
(such as GPT-4). Utilizing these models with the
prototype would require considerable modifications.

A large part of the documentation and
requirements produced at the case company are
written in Finnish. Therefore, it could be beneficial
to extend the tool’s functionality to requirements and
documentation written in Finnish. Furthermore,
BERT models trained on Finnish datasets, such as
FinBERT [10] from TurkuNLP, already exist and are
freely available.

ACKNOWLEDGEMENTS

The thesis was conducted in collaboration with
Fortum’s Nuclear Generation business unit and Aalto
University. The author extends their gratitude to the
thesis supervisor Prof. Fabian Fagerholm and
advisors Dr. Marjo Kauppinen, Tapani Raunio (MSc)
and Leena Kappinen (MSc), and the Nuclear Al
project group for their invaluable feedback and help
throughout the thesis process.

REFERENCES

[1] O. Gotel and C. Finkelstein, “An analysis of the
requirements traceability problem”, Proceedings
of IEEE International Conference on
Requirements Engineering, 1994, pp. 94-101.

[2] H. Sultanov and J. H. Hayes, “Application of
swarm techniques to requirements engineering:
Requirements tracing”, 18th IEEE International
Requirements Engineering Conference, 2010,
pp. 211-220.

[3] J. Hayes, A. Dekhtyar, and J. Osborne,
“Improving requirements tracing via
information retrieval”, Proceedings. 11th IEEE
International Requirements Engineering
Conference, 2003., 2003, pp. 138-147.

[4] J. Cleland-Huang, A. Czauderna, M. Gibiec, and
J. Emenecker, “A machine learning approach
for tracing regulatory codes to product specific
requirements”, Proceedings of the 32nd ACM/
IEEE International Conference on Software
Engineering - Volume 1, 2010, pp. 155-164.

[5] M. Borg, P. Runeson, and A. Ardo, “Recovering
from a decade: A systematic mapping of
information retrieval approaches to software
traceability”, Empirical Software Engineering,
vol. 19, no. 6, pp. 1565-1616, 2014.

[6] A. De Lucia, A. Marcus, R. Oliveto, and D.
Poshyvanyk, “Information retrieval methods for
automated traceability recovery”, Software and
Systems Traceability, J. Cleland-Huang, O.
Gotel, and A. Zisman, Eds. London: Springer
London, 2012, pp. 71-98.

[7] D. Jurafsky and J. H. Martin, “Speech and
Language Processing: An Introduction to
Natural Language Processing, Computational
Linguistics, and Speech Recognition.”
unpublished, 2023.

[8] K. Peffers, T. Tuunanen, M. Rothenberger, and
S. Chatterjee, “A design science research
methodology for information systems research”,
Journal of Management Information Systems,
vol. 24, pp. 45-77, Jan. 2007.

[9] N. Reimers and I. Gurevych, “Sentence-bert:
Sentence embeddings using siamese bert-
networks”, Proceedings of the 2019 Conference
on Empirical Methods in Natural Language
Processing, Association for Computational
Linguistics, Nov. 20109.

[10] A.Virtanen, J. Kanerva, R. llo, et al.,
“Multilingual is not enough: Bert for finnish”,
2019.

