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ABSTRACT 

This paper summarizes the results of a thesis conducted in collaboration with Fortum’s Nuclear 

Generation business unit and Aalto University. The aim of the thesis was to investigate how large language 

models can be utilized to improve the requirements tracing process in the nuclear energy domain. To achieve 

this, the design science method was applied to create a prototype for automated candidate trace link generation. 

The prototype used a similarity-based approach for generating candidate trace links, where LLMs were utilized 

to compute the similarity between two requirements (or a requirement and a document section). Based on the 

interviews with four experts at Fortum’s Nuclear Generation business unit, two use cases were defined for the 

prototype: requirement-to-requirement tracing and requirement-to-documentation tracing. The prototype’s 

accuracy in the first use case was on a decent level, finding around 80% of the true links in its top-5 candidate 

links in three out of the four test sets. However, the limitations of the prototype were highlighted in the 

requirement-to-documentation use case, where the prototype was only able to find around 50% of the true links 

in its top-5 candidate links.  

1 INTRODUCTION 

Nuclear power plants are complex safety-

critical systems and projects related to them are 

highly regulated. Therefore, modernization and 

renewal projects have a large number of requirements 

derived from regulations and guidelines. With the 

addition of the technical requirements imposed by the 

existing systems and devices in the plant, large 

projects can have thousands of requirements, which 

need to be traced throughout the project life cycle.  

Requirements traceability is defined as “the 

ability to describe and follow the life of a 

requirement, in both a forwards and backwards 

direction” [1, p. 4]. This definition implies that 

requirements should be able to be traced both 

backwards to their origins and forwards to all 

documentation created based on the requirements [1]. 

The requirements tracing process can be divided into 

four steps: document parsing, candidate link 

generation, candidate link evaluation and traceability 

analysis [2]. According to Sultanov et al. [2], 

candidate link generation refers to the process of 

finding “candidate” links between the requirements 

and other design artifacts. Depending on the 

approach, candidate link generation can be a 

repetitive, mundane and time-consuming activity, 

especially if the amount of requirements is large [3].  

The candidate link generation process has 

previously been automated via the use of information 

retrieval methods [3]. However, commonly used 

information retrieval (IR) methods, such as the vector 

space model (VSM) and latent semantic indexing 

(LSI), often struggle with synonyms or abbreviations 

[4]. Furthermore, IR methods often use the bag-of-

words representation which ignores the order and 

context of the terms in the sequence [5].  

Statistical language models enable the 

utilization of the ordering and context between terms. 

These models use n-gram approximations and the 

context of the previous 𝑛 terms in the sequence to 

calculate the probability that a query is relevant to the 

document [6]. However, as DeLucia et al. [6] point 

out, the computational cost of estimating these 

probabilities grows exponentially as the context size, 

n, is increased.  

Using large language models (LLMs) to 

determine the similarity between two pieces of  text 

offers a promising solution for overcoming the 

challenges with IR methods and statistical language 

models. In contrast to statistical language models, 

LLMs are able to utilize much larger context 

windows while being easily parallelizable (i.e., the 

computations can be processed concurrently rather 

than sequentially) [7]. Additionally, LLMs are 

trained using massive amounts of text, which allows 

the model to generalize to unseen data and to learn 

similarities between different terms [7]. 

This paper presents the development and 

evaluation of a prototype for automated requirements 

tracing for generating requirement-to-requirement 

and requirement-to-documentation candidate trace 

links. Different methods for automated requirements 

tracing were compared, focusing on VSM and 

similarity-based LLM methods.  
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2 RESEARCH METHODS 

The main contributions of the thesis were  a 

literature review and an empirical study. Design 

science method was applied in the empirical study to 

design and implement a first prototype for automated 

candidate trace link generation. 

 

2.1 Research problem 

The aim of the thesis was to present and 

implement a semi-automated method to assist in the 

current requirements tracing process. Large language 

models were identified as a promising technical 

solution for automating parts of the process. 

Therefore, the research problem was formulated as: 

How can large language models be utilized to 

improve the requirements tracing process in the 

nuclear energy domain?  

 

2.2 Literature review 

A systematic literature review was conducted 

to collect and analyse scientific literature relevant to 

the research problem of the thesis. The scope of the 

literature review was limited to requirements tracing, 

requirements management in the nuclear energy 

domain, and the utilization of large language models 

in text similarity analysis. 

The search and selection of relevant literature 

was done systematically. The search and selection 

process consisted of three main steps: trial-and-error 

search to find suitable search queries, database search 

based on the queries, and applying the snowballing 

method to the papers found from the database search.  

 

2.3 Design science 

The empirical study applied the design science 

research method, which “creates and evaluates IT 

artifacts intended to solve identified organizational 

problems" [8, p. 49]. In the context of the thesis, the 

organizational problem was the time-consuming 

manual requirements tracing process. The proposed 

IT artifact to solve this problem was the prototype for 

automated candidate link generation. 

The design science process consisted of  five 

main steps introduced by Peffers et al. [8]. The 

problem identification step of the empirical study 

consisted of conducting semi-structured interviews 

and a document analysis.  In the definition of the 

solution objectives step, the results of the interviews 

and document analysis were used to determine the 

prototype’s main objectives and detailed 

requirements.  

The design and development step consisted of 

designing the architecture of the prototype based on 

functional and architecturally significant non-

functional requirements. In the demonstration and 

evaluation step, the prototype was evaluated using 

both quantitative and qualitative measures. The 

quantitative evaluation included testing the 

prototype’s accuracy and performance on multiple 

different test sets. The qualitative evaluation included 

evaluating the fulfilment of the prototype’s 

requirements.  

The communication step included presenting 

the prototype and the results of its evaluation to the 

main stakeholders of the AI-project group at Fortum 

and the thesis seminar arranged by the university.  

 

2.4 The prototype  

The prototype was trained using the sentence-

transformers library and its API for fine-tuning 

LLMs, and existing requirements tracing data from 

earlier projects. Two versions of the RoBERTa LLM 

fine-tuned for general text similarity tasks were 

tested. The smaller all-distilroberta-v1 model had 

82.1 million parameters and the larger all-roberta-

large-v1 355 million parameters. These relatively 

small models were used, because the prototype had 

to be run locally due to the confidentiality of the 

training and testing data.  

Figure 1 shows the fine-tuning pipeline of the 

LLM. The model takes two sections of text (a 

requirement or document section) as its input and 

predicts, whether a trace link should exist between 

the two inputs. These predictions are compared 

against the manually created trace links in the 

training data. Then, the parameters of the model are 

tuned to improve the predictions, i.e. give higher 

similarity scores to inputs, which have a trace link 

between them.  

 
Figure 1: The fine-tuning (left) and inference (right) 

pipelines LLM, modified from [9].  

 

Recall was used as the main accuracy metric 

for the evaluation of the prototype. Recall is defined 
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as the ratio between found true links and all true links. 

The recall value approaches one as the amount 

candidate links is increased (if all possible candidate 

links are returned, the recall value is always 1). 

Therefore, recall at different intervals of returned 

candidate links was used to evaluate the prototype.   

3 RESULTS  

3.1 Literature Review 

The most relevant findings of the literature 

review in terms of the development of the prototype 

and their effects on the empirical study are gathered 

in Table 1. These discoveries were used in the 

"defining the solution objectives" phase of the 

empirical study, when defining the high-level 

objectives and requirements for the prototype. 

Additionally, the discoveries were utilized when 

designing the architecture of the prototype, choosing 

the training methods, and choosing the appropriate 

pre-trained LLM for the task.  

Table 1: The main discoveries of literature review. 

Main discoveries 
Effects on the empirical 

study  

STUK requires that 

appropriate requirements 

traceability is implemented 

through all project phases.  

Justifies the importance and 

need for implementing 

requirements tracing in 

projects.  

Recall, precision and the F2-

score are the main measures 

of accuracy used for 

evaluating automated 

requirements tracing methods. 

Recall was used as the main 

accuracy metric for the 

evaluation of the prototype. 

The requirements tracing 

problem can be formulated as 

a text matching problem.  

The prototype’s similarity-

based LLM 

implementations followed 

the text matching problem 

formulation. 

Fine-tuning LLMs on 

domain-specific data can 

considerably increase the 

accuracy of the results.  

Requirements tracing data 

from earlier projects was 

used to fine-tune the pre-

trained LLMs. 

Autoencoder models 

generally outperform 

autoregressive  models in 

natural language 

understanding tasks. 

Autoencoder models 

(RoBERTa) were used in 

the implementation of the 

prototype.  

 

3.2 Empirical Study 

The empirical study tested a similarity-based 

approach for generating requirement-to-requirement 

and requirement-to-documentation candidate trace 

links. The basic idea behind the approach was to 

utilize LLMs to calculate the similarity between two 

inputs (requirement or document section) and rank all 

the input pairs based on their similarity score. The 

process of calculating the similarity scores is 

modelled in the  inference pipeline in Figure 1.  

Three main implementations for computing 

the similarity were tested: VSM, basic LLM and fine-

tuned LLM. Of these the fine-tuned LLM 

implementation performed the best on average. 

However, on the more challenging test sets 

(requirement-to-documentation tracing) all 

implementations seemed to perform equally poorly.  

The prototype’s accuracy was on a good level 

when creating trace links between native and process 

requirements (see Figure 2), and between technical 

stakeholder requirements and technical system-level 

requirements. In these cases, when retrieving the top-

5 candidate links, the prototype averaged 80% recall. 

However, in one dataset where technical stakeholder 

requirements were linked to native requirements, the 

prototype struggled to find the correct links. 

 

 
Figure 2: The recall of the prototype in requirement-

to-requirement tracing. 

 

As shown in Figure 3, the prototype’s accuracy 

was significantly worse in the requirement-to-

documentation use case than in the requirement-to-

requirement use case. On average the model only 

found around 50% of the true links when the top-5 

candidate links were considered.  

 

 
Figure 3: The recall of the prototype in requirement-

to-documentation tracing. 
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4 CONCLUSIONS 

Large language models seem to produce 

significantly more accurate candidate trace links 

when the source and target requirements are 

expressed in a similar level of technical detail. The 

prototype was able to generate sufficiently accurate 

trace links between process requirements and native 

requirements as well as between technical 

stakeholder requirements and technical system-level 

requirements. However, the prototype struggled to 

find accurate trace links between technical 

stakeholder requirements and native requirements 

(YVL requirements).  

A similarity-based LLM approach may not be 

suitable for generating trace links between 

requirements and documentation. The results showed 

that the accuracy of the prototype was insufficient in 

requirement-to-documentation tracing. In theory, the 

vector representations of the requirements and 

document sections created by the LLM should be 

able to capture complex relationships between 

requirements and documentation. However, in 

practice the model struggled with the varying 

terminology and level of technical detail between the 

requirements and documentation. 

As the thesis was limited to only testing 

relatively small autoencoder LLMs, future research 

could focus on testing the performance of state-of-

the-art LLMs in the requirements tracing task. 

However, the recent development of LLMs has 

focused on generative AI and autoregressive models 

(such as GPT-4). Utilizing these models with the 

prototype would require considerable modifications.  

A large part of the documentation and 

requirements produced at the case company are 

written in Finnish.  Therefore, it could be beneficial 

to extend the tool’s functionality to requirements and 

documentation written in Finnish. Furthermore, 

BERT models trained on Finnish datasets, such as 

FinBERT [10] from TurkuNLP, already exist and are 

freely available.  
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