Experiences Utilizing Apros® Simulator in a renewal with Digital I&C

NUCLEAR SCIENCE AND TECHNOLOGY SYMPOSIUM – SYP 2019

Marina Congress Center, Helsinki, Finland 30.-31.10.2019

Mika Heikkilä

Fortum Power and Heat Oy, 30.10.2019

Loviisa Nuclear Power Plant

VVER-440 units x2

- Commissioned 1977 & 1980
- Operating licenses valid until 2027 & 2030
 - Lifetime extensions under investigations

I&C renewal program

 Ensure licensability and improve maintainability of I&C systems until the end of plant lifetime

Modelling

• Extensive plant model

Simulators

- Engineering simulator
- Development simulator
- Training simulator x2
- Testing simulator (test field)

ELSA project (2014-2019)

Largest, single project since the construction of Loviisa NPP

- Scope: Strategically targeted partial renewal only most important safety or operability improvements
- ✓ Implementation: in 3 phases
- ✓ Main partner: Rolls-Royce Civil Nuclear SAS (France)

End result:

 NUCLEAR
 Energy & Environment | New Nuclear | Regulation & Safety | Nuclear Policies | Corporate | Uranium & Fuel

 Fortum, Rolls-Royce complete automation of Loviisa plant

Home News Features Opinion Video Events Jobs Buyers' Guide White Papers

I&C upgrade ends in success at Loviisa

Successful implementation of Rolls-Royce digital I&C technologies at Fortum's Loviisa nuclear power plant Rolls-Royce technology, design, licensing, installation and commissioning

Fortum design support, licensing with ADLAS®, testing with APROS® and commissioning

ELSA Key Success Factors

Apros® - Process Simulation Software

Apros® is a comprehensive, accurate and user friendly software product for modelling and dynamic simulation of power plants, energy systems and industrial processes.

connectivity to third party software & I&C systems: Areva TXS, Siemens SPPA-T2000, ABB PCS, Rolls-Royce Spinline

Developed by Fortum and VTT Technical Research Centre of Finland since 1986 - <u>www.apros.fi</u>

Apros® - Process Simulation Software

Fields of industry:

Apros[®] has users in 33 countries

Nuclear references e.g. in Japan, Slovenia, Sweden, China, Russia, Finland.

Utilization of Apros® simulators in ELSA project

Reactor Power Controller renewal

Original Reactor Power Control System (ARM)

- Analogue Russian technology
- Cascaded MSHP and NF controllers
 - Simple increase/decrease controller

New Reactor Power Control System (RPCS)

- Digital Rolls-Royce
 Spinline technology
- Cascaded MSHP
 and NF controllers
 - Industrial standard controller

Design basis for new system:

- Functionalities are based on the original ARM system
- ARM systems' behavior during the process transients to be used as a reference

Challenge: Transient based testing limited with real power plant processes

Reactor Power Controller renewal - Tuning

Controller parameters

- 13 test cases defined by Loviisa operators and I&C experts
- Apros® plant model and Rolls-Royce I&C emulation
- Test results compared to the modelled ARM controller

Final controller verification

- at test field with real I&C cabinets
- during plant start-up using restricted scope of transients

No need for controller tuning has been found after the commissioning

Utilization of Apros® simulators in ELSA project

ELSA Interconnected tests (ICT)

- Conventional I/O testing by Rolls-Royce
- Simulator based I&C testing with Fortum & STUK
 - Tests with realistic process response to ensure that I&C systems work with power plant processes as expected
 - Apros® model connected to Rolls-Royce I&C cabinets
 - Progressive testing by replacing emulated I&C systems one by one with real I&C cabinets
 - Interactions between the systems
 - Comparison of the results to the tests with emulated I&C
 - Additional tests requested by STUK

ELSA ICT architecture – emulations vs. real I&C

Overall test strategy

ICT Tests Test cases defined by I&C supplier - System performance - Functional	 Additional simulator based ICT Tests Test cases based on the expertise of NPP operators' and simulation experts Special transient test cases for the power controller Testing of the new I&C functions with the other plant I&C systems and processes 	Regulatory tests Beyond design bases test cases that challenged the plant as a whole
 Degraded modes Periodic tests 		
Rolls-Royce	efortum	🖾 stuk

Benefits – Increased Quality

Extensive test coverage	 Dynamic transients with realistic plant process response I&C system behavior in different plant states I&C systems' interconnections and interaction 	
Earlier error findings	 Testing of I&C functions before manufacturing of the cabinets Software and hardware modifications possible based on simulator findings 	
Test repeatability	 Basic design vs. detailed design Emulated I&C vs. real I&C cabinets Validation of the design modifications 	

No significant deficiencies were found during or after the commissioning

Benefits – Time savings

Reduced test field and commissioning time

- Flexibility of testing schedule through the switching between emulated and real I&C
 - Testing can be performed using available cabinets only one, several, all
- Extensive process transients and controller tuning was done at testfield
 - Gives confidence in the tuning of the controllers with the emulated I&C
 - Minimizes the outage duration

Estimated time saving at ELSA test field was approx. 7 months

Commissioning of new I&C systems was performed during normal refueling outages

Benefits - Operator engagement

Win-win in the co-operation with operating personnel

- Simulators enable operating personnel's efficient involvement
 - ✓ Allows I&C project to benefit from operators' knowledge and experience
 - ✓ Increases the confidence on the project and reduce the change resistance
 - Increases operators' knowledge, helps them to learn and adopt to new systems

Guarantee of consistency between training simulator and real I&C systems

✓ Testing and training of future I&C modifications is possible at simulators

Only positive feedback received about the new I&C systems from the operating personnel

- Modelled plant systems and processes can be utilized effectively in I&C renewal
- Extensive utilization of simulators saved time and increased quality
 - Transients required for power controller tuning and testing
- Future modifications can be simulator tested without extensive test field
- Lessons learned: Simulator models, MMI and operating personnel to be involved in design and testing even earlier in upcoming projects

More about ELSA project: https://www.neimagazine.com/features/featureic-upgrade-ends-in-success-at-loviisa-7048883/

Thank you for your attention! Questions?

